1952
M. Ikeda et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1949–1952
other hand, ascorbic acid pretreated cells did not show significant
fluorescence increase (Fig. 5b). The difference of frequency-bright-
ness relationship before and after addition of H2O2 was not notice-
able, showing the slight decrease of the median brightness from
98.2 to 85.6 by addition of H2O2.
References and notes
1. Lander, H. M. FASEB J. 1997, 11, 118.
2. Finkel, T. J. Leukoc. Biol. 1999, 65, 337.
3. Griendling, K. K.; Harrison, D. G. Circ. Res. 1999, 85, 562.
4. Sauer, H.; Wartenberg, M.; Hescheler, J. Cell. Physiol. Biochem. 2001, 11, 173.
5. Poli, G.; Biasi, F.; Chiarpotto, E.; Dianzani, M. U.; De Luca, A. Free Radic. Biol. Med.
1989, 6, 167.
6. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313.
7. Meneghini, R. Free Radic. Biol. Med. 1997, 23, 783.
8. Best, B. P. Rejuvenation Res. 2009, 12, 199.
9. Farinati, F.; Cardin, R.; Degan, P.; Rugge, M.; Di Mario, F.; Bonvicini, P.;
Naccarato, R. Gut 1998, 42, 351.
10. Shinmura, K.; Tao, H.; Goto, M.; Igarashi, H.; Taniguchi, T.; Maekawa, M.;
Takezaki, T.; Sugimura, H. Carcinogenesis 2004, 25, 2311.
11. Flamm, E. S.; Demopoulos, H. B.; Seligman, M. L.; Poser, R. G.; Ransohoff, J.
Stroke 1978, 9, 445.
H2O2 is known to generate hydroxyl radical by Fenton reaction
with biological Fe(II) ion.30 Nitroxide can be oxidized by hydroxyl
radical, forming oxoammonium.31 This oxoammonium form is eas-
ily reduced by two-electron reductants. Compound 3 was consid-
ered to have been oxidized by hydroxyl radical generated from
H2O2, and subsequent two-electron reduction results in loss of
the paramagnetic property. In the case of pretreatment with ascor-
bic acid, H2O2 or other ROS are trapped by the excess amount of
ascorbic acid, so that the redox level does not change. Even though
TEMPO can also lose its paramagnetic property by the reduction
with cellular reductant such as ascorbic acid directly, TEMPO is rel-
atively rapidly reduced by such reductants and reached its redox
equilibrium status. In the experiments, the ESR signal intensity of
compound 3 was found to become stable before the oxidant treat-
ment. It was considered that the effect of the initial reduction by
intracellular ascorbic acid and other reductants was canceled in
our experimental conditions.
12. Gabbita, S. P.; Lovell, M. A.; Markesbery, W. R. J. Neurochem. 1998, 71, 2034.
13. Wang, J.; Xiong, S.; Xie, C.; Markesbery, W. R.; Lovell, M. A. J. Neurochem. 2005,
93, 953.
14. Smith, M. A.; Harris, P. L.; Sayre, L. M.; Perry, G. Proc. Natl. Acad. Sci. U.S.A. 1997,
94, 9866.
15. Evans, P. H. Br. Med. Bull. 1993, 49, 577.
16. Gensler, H. L.; Bernstein, H. Q Rev. Biol. 1981, 56, 279.
17. Kasai, H.; Crain, P. F.; Kuchino, Y.; Nishimura, S.; Ootsuyama, A.; Tanooka, H.
Carcinogenesis 1986, 7, 1849.
18. Saito, S.; Yamauchi, H.; Hasui, Y.; Kurashige, J.; Ochi, H.; Yoshida, K. Res.
Commun. Mol. Pathol. Pharmacol. 2000, 107, 39.
19. Herbert, K. E.; Evans, M. D.; Finnegan, M. T.; Farooq, S.; Mistry, N.; Podmore, I.
D.; Farmer, P.; Lunec, J. Free Radic. Biol. Med. 1996, 20, 467.
20. Haghdoost, S.; Czene, S.; Näslund, I.; Skog, S.; Harms-Ringdahl, M. Free Radic.
Res. 2005, 39, 153.
21. Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J. FASEB J. 2003, 17, 1195.
22. Srikun, D.; Albers, A. E.; Nam, C. I.; Iavarone, A. T.; Chang, C. J. J. Am. Chem. Soc.
2010, 132, 4455.
In conclusion, compound 3 provided the largest fluorescence
recovery among the three novel bisbenzimide-nitroxides we syn-
thesized. This fluorescence increase was ascorbic acid concentra-
tion-dependent and was not affected by the presence of DNA.
Compound 3 was localized in cell nuclei and showed s substantial
23. Dickinson, B. C.; Tang, Y.; Chang, Z.; Chang, C. J. Chem. Biol. 2011, 18, 943.
24. Halvey, P. J.; Hansen, J. M.; Johnson, J. M.; Go, Y.-M.; Samali, A.; Jones, D. P.
Antioxid. Redox Signal. 2002, 9, 807.
25. Ban, S.; Nakagawa, H.; Suzuki, T.; Miyata, N. Bioorg. Med. Chem. Lett. 2007, 17,
1451.
fluorescence increase upon exposure to 100 lM H2O2. Our results
indicate that compound 3 can be used as a probe to visualize the
redox state in nuclei of living cells.
26. Ban, S.; Nakagawa, H.; Suzuki, T.; Miyata, N. Bioorg. Med. Chem. Lett. 2007, 17,
2055.
Acknowledgments
27. Ikeda, M.; Nakagawa, H.; Ban, S.; Tsumoto, H.; Suzuki, T.; Miyata, N. Free Radic.
Biol. Med. 2010, 49, 1792.
28. Bystryak, I. M.; Likhtenshtein, G. I.; Kotel’nikov, A. I.; Hankovsky, O. H.; Hideg,
K. Russ. J. Phys. Chem. 1986, 60, 1679.
29. Bazhulina, N. P.; Nikitin, A. M.; Rodin, S. A.; Surovaya, A. N.; Kravatsky, Y. V.;
Pismensky, V. F.; Archipova, V. S.; Martin, R.; Gursky, G. V. J. Biomol. Struct. Dyn.
2009, 26, 701.
30. Imalay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640.
31. Samuni, A.; Goldstein, S.; Russo, A.; Mitchell, J. B.; Krishna, M. C.; Neta, P. J. Am.
Chem. Soc. 2002, 124, 8719.
This work was supported by Grant-in-Aid for JSPS Fellows
(M.I.), JST PRESTO program (H.N.), Grants-in-Aid for Scientific Re-
search on Innovative Areas (Research in a Proposed Research Area)
(No. 21117514 to H.N.), and Grants-in-Aid for Scientific Research
(No. 22590103 to H.N.) from Ministry of Education, Culture, Sports
Science and Technology Japan.
Supplementary data
Supplementary data associated with this article can be found, in