ACS Combinatorial Science
Research Article
Figure 3. Lipinski rules analysis for 70 compounds and intermediates; calculated using Molinspirations Online Molecular Properties Calculator
Lee, S.; Son, K. H.; Koh, S.; Paik, Y. K.; Kwon, B. M.; Han, D. C.
Blocking Tumor Cell Migration and Invasion with Biphenyl Isoxazole
A short, reliable, and efficient convergent method has been
Derivative KRIBB3, a Synthetic Molecule That Inhibits Hsp27
CONCLUSIONS
■
developed to produce a diverse array of novel isoxazolodihy-
dropyridinones starting from commercially available beta-amino
acids and benzaldehydes. Eleven isoxazolopyridinones were
synthesized and five of these were diversified further with
Phosphorylation. J. Biol. Chem. 2005, 50, 41439−41448. (d) Rozman,
B.; Praprotnik, S.; Logar, D.; Tomsic, M.; Hijnik, M.; Kos-Golja, M.;
Dolenc, P. Leflunomide and Hypertension. Ann. Rheum. Dis. 2002, 61,
567−569. (e) Lee, Y. S.; Park, S. M.; Kim, B. H. Synthesis of 5-
CuAAC chemistry to give 42 additional isoxazolodihydropyr-
idinone-triazole products. In all, 64 of the 70 compounds and
intermediates synthesized were acceptable for submission to the
NIH Molecular Libraries Small Molecule Repository for high-
throughput biological screening; the unsubmitted 6 compounds
contained excluded aromatic azides.
Isoxazol-5-yl-2′-deoxyuridines Exhibiting Antiviral Activity Against
HSV and Several RNA Viruses. Med. Chem. Lett. 2009, 19, 1126−
1128. (f) Lawrence, S. L.; Roth, V.; Slinger, R.; Toye, B.; Gaboury, I.;
Lemyre, B. Cloxacillin Versus Vancomycin for Presumed Late-Onset
Sepsis in the Neonatal Intensive Care Unit and the Impact Upon
Outcome of Coagulase Negative Staphylococcal Bacteremia: a
Retrospective Cohort Study. BMC Pediatr. 2005, 5, 49.
(2) For review of isoxazole synthesis see: (a) Margaretha, P.
Synthesis of Isoxazoles. Sci. Syn. 2010, 1, 109−131. (b) Pinho e Melo,
T. M. V. D. Recent Advances on the Synthesis and Reactivity of
Isoxazoles. Curr. Org. Chem. 2005, 9, 925−958. (c) Wakefield, B. J.
Isoxazoles. Sci. of Syn. 2001, 11, 229−288. Other sources: (d) Huisgen,
R. 1,3-Dipolar CycloadditionIntroduction, Survey, Mechanism. In 1,3-
Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: NewYork, 1984;
Vol. 1, pp 1−176. (e) Jaeger, V.; Colinas, P. A. Nitrile Oxides. In
Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards
Heterocycles and Natural Products, Padwa, A., Ed.; Wiley: Hoboken, NJ,
2002; Vol. 59, pp 361−472. (f) Mukaiyama, T.; Hoshino, T. The
Reactions of Primary Nitroparaffins with Isocyanates. J. Am. Chem. Soc.
1960, 82, 5339−5342.
(3) Waldo, J., P.; Mehta, S.; Neuenswander, B.; Lushington, G. H.;
Larock, R. C. Solution Phase Synthesis of a Diverse Library of Highly
Substituted Isoxazoles. J. Comb. Chem. 2008, 10, 658−663.
(4) Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, S.
Direct Synthesis of Trisubstituted Isoxazoles Through Gold-Catalyzed
Domino Reaction of Alkynyl Oxime Ethers. Org. Lett. 2010, 12, 2594−
2597.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures, characterization data, and 1H
and 13C NMR spectra of all compounds, including COSY,
INADEQUATE, HSQC, and HMBC for compound 5{3}. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the National Institutes of Health (GM0891583
and RR1973) and the National Science Foundation [CHE-
0910870; and CHE-0443516, CHE-0449845, CHE-9808183,
and DBIO 722538 for NMR spectrometers] for their generous
support.
(5) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Efficient and
Regioselective One-Pot Synthesis of 3-Substituted and 3,5-Disub-
stituted Isoxazoles. Org. Lett. 2009, 11, 3982−3985.
(6) (a) Kaminski; Jerzy; Eckstein; Zygmunt. 1,3-Dipolar Cyclo-
addition of some Diphenylacethydroximic Acid Chlorides. Pol. J. Chem.
1982, 56, 221−228. (b) Bode, J. W.; Hachisu, Y.; Matsuura, T.; Suzuki,
K. Facile Construction and Divergent Transformations of Polycyclic
Isoxazole: Direct Access to Polyketide Architectures. Org. Lett. 2003, 5,
391−394. (c) El-Badri, M. H.; Kurth, M. J. Synthesis of Thiazolo- and
7,8-Dihydrothiazolo[4,5-e]benzoisoxazoles. J. Comb. Chem. 2009, 11,
228−238.
REFERENCES
■
(1) (a) Jawalekar, A. M.; Reubsaet, E.; Rutjes, F. P. J. T.; van Delft,
F. L. Synthesis of Isoxazoles by Hypervalent Iodine-Induced
Cycloaddition of Nitrile Oxides to Alkynes. Chem Comm. 2011, 47,
3198−3200. (b) Sperry, J.; Wright, D. Furans, Thiophenes and
Related Heterocycles in Drug Discovery. Curr. Opin. Drug Discovery
Develop. 2005, 8, 723−740. (c) Shin, K. D.; Lee, M. Y.; Shin, D. S.;
283
dx.doi.org/10.1021/co200200u | ACS Comb. Sci. 2012, 14, 280−284