Organometallics
Article
of [{(1-Cl)-μ-Na}2], 32 mg (0.16 mmol, 1.0 equiv) of AgBF4, and
64 mg (0.16 mmol, 1.0 equiv) of OPOct3 in 5 mL of CH2Cl2 was
stirred for 30 min in the dark. The resulting precipitate was filtered off
to afford a yellow solution. The filtrate was evaporated and the
resulting residue was washed with pentane and dried under vacuum to
yield 1-OPOct3 as a beige solid (122 mg, 0.13 mmol, 81%).
radiation source (Mo Kα, λ = 0.710 73 Å) and an image plate
detection system. The structures were solved by Patterson and direct
methods (SHELXS-97),62 completed with difference Fourier
syntheses, and refined with full-matrix least squares using SHELXL-
9763 minimizing w(Fo − Fc2)2.
2
3
4
1H NMR (400 MHz, CD2Cl2): δ 8.03 (dd, JHH = 7.6, JPH = 4.7,
1H, 6-H), 7.67 (br, 2H, 12-H), 7.51 (vt, J = 7.8, 2H, 10-H), 7.42 (vt,
J = 7.2, 1H, 5-H), 7.35−7.21 (m, 2H, 4-H and 3-H), 7.01 (vt, J = 7.5,
ASSOCIATED CONTENT
■
S
* Supporting Information
3
4
Text, tables, figures, and CIF files giving detailed experimental
procedures and analytical data, detailed polymerization
procedures, structural diagrams, selected bond lengths and
angles, and crystallographic data/processing parameters for all
structures. This material is available free of charge via the
2H, 11-H), 6.93 (dd, JHH = 8.2, JPH = 4.7, 2H, 9-H), 3.60 (s, 6H, Ar-
OCH3), 1.96−1.84 (m, 6H, 13-H), 1.69−1.56 (m, 6H, 14-H), 1.49−1.40
(m, 6H, 15-H), 1.38−1.21 (m, 24H, 16-H and 17-H & 18-H and 19-H),
3
0.88 (t, JHH = 6.7, 9H, 20-H), 0.14 (s, 3H, Pd-CH3). 31P{1H} NMR
(162 MHz, CD2Cl2): δ 65.3 (br, OPOct3), 26.1 (PAr). 13C{1H} NMR
2
(101 MHz, CD2Cl2): δ 160.9 (d, JPC = 1.7, C8), 149.2 (br, C1), 138.4
(br, C12), 135.0 (d, 2JPC = 2.7, C3), 133.6 (C10), 130.5 (C5), 128.5 (br
3
1
3
d, JPC = 8.5, C4), 128.2 (d, JPC = 52.8, C2), 128.0 (d, JPC = 8.9, C6),
AUTHOR INFORMATION
3
1
3
■
120.8 (d, JPC = 12.5, C11), 117.2 (d, JPC = 59.7, C7), 111.9 (d, JPC
=
4.6, C9), 55.7 (Ar−OCH3), 32.4 (C18), 31.7 (d, 3JCP = 14.3, C15), 29.7
(C16 & C17), 27.8 (d, 1JPC = 64.5, C13), 23.2 (C19), 22.3 (d, 2JPC = 3.8,
C14), 14.4 (C20), 0.9 (br, Pd−CH3). Anal. Calcd for C45H72O6P2PdS: C,
59.43; H, 7.98. Found: C, 58.18; H, 7.87. MS (FAB): m/z 908 [M]+, 893
[M − Me]+, 773 [H(OPOct3)2]+, 522 [M − OPOct3]+, 507 [M −
OPOct3 − Me]+, 387 [OPOct3 + H]+. ATR-IR: 1/λ (cm−1) 2923(m),
2853 (m), 1588 (w), 1574 (w), 1476 (m), 1464 (m), 1430 (m), 1262 (s),
1251 (s), 1159 (s, νasym(SO3)), 1107 (ss, ν(PO)), 1001 (s, νsym(SO3)),
755 (s), 669 (m).
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
B.N. acknowledges support by the state of Baden-Wurttemberg
̈
by a Landesgraduiertenforderung-Stipend. This work is financi-
̈
ally supported by the DFG (Me 1388/10). S.M. is indebted to
the Fonds der Chemischen Industrie. We thank D. Guironnet
for providing crystals of 1-MeOH.
REFERENCES
■
(1) Mülhaupt, R. Macromol. Chem. Phys. 2003, 204, 289−327.
(2) Drent, E.; Dijk, R. v.; Ginkel, R. v.; Oort, B. v.; Pugh, R. I. Chem.
Commun. 2002, 744−745.
[(P∧O)PdMe(OPPh3)] (1-OPPh3; P∧O = κ2-P,O-2-(2-MeOC6H4)2-
PC6H4SO3)). A suspension of 131 mg (0.10 mmol, 0.5 equiv) of [{(1-Cl)-
μ-Na}2], 57 mg (0.20 mmol, 1.0 equiv) of OPPh3, and 40 mg
(0.21 mmol, 1.0 equiv) of AgBF4 in 20 mL of CH2Cl2 was stirred for
12 h in the dark. The resulting precipitate was filtered off to give a
yellow solution. The filtrate was evaporated and the resulting residue
was suspended in 20 mL of pentane and stirred for 3 h. The precipitate
was collected by filtration and dried under vacuum to yield 1-OPPh3
as a slightly yellow solid (125 mg, 0.16 mmol, 80%). Crystals suitable
for X-ray diffraction analysis were obtained from a CHCl3 solution
after layering with pentane.
(3) (a) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109,
5215−5244. (b) Chen, E. Y. X. Chem. Rev. 2009, 109, 5157−5214.
(c) Takeuchi, D. Dalton Trans. 2010, 39, 311−328. (d) Camacho, D. H.;
Guan, Z. Chem. Commun. 2010, 46, 7879−7893. (e) Berkefeld, A.;
Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538−2542.
(4) For some very recent (P∧O)Pd catalyst developments and their
influence on polymerization behavior see: (a) Gott, A. L.; Piers, W. E.;
Dutton, J. L.; McDonald, R.; Parvez, M. Organometallics 2011, 30,
4236−4249. (b) Kim, Y.; Jordan, R. F. Organometallics 2011, 30,
4250−4256. (c) Wucher, P.; Caporaso, L.; Roesle, P.; Ragone, F.;
1H NMR (600 MHz, CD2Cl2): δ 8.04−8.00 (m, 1H, 6-H), 7.82−
7.75 (m, 6H, 14-H), 7.63−7.48 (m, 13H, 10-H and 12-H & 15-H and
16-H), 7.44−7.40 (m, 1H, 5-H), 7.31−7.24 (m, 2H, 3-H and 4-H),
6.98 (vt, J = 7.2, 2H, 11-H), 6.92 (dd, 3JHH = 7.5, 4JPH = 4.7, 2H, 9-H),
3.57 (s, 6H, Ar−OCH3), 0.13 (br s, 3H, Pd-CH3). Note that the Pd-
Me shift is very sensitive to small amounts of impurities, e.g. H2O.
31P{1H} NMR (162 MHz, CD2Cl2): δ 34.9 (br, OPPh3), 27.0 (PAr).
Cavallo, L.; Mecking, S.; Gottker-Schnetmann, I. Proc. Natl. Acad. Sci.
̈
U.S.A. 2011, 108, 8955−8959. (d) Zhou, X.; Jordan, R. F.
Organometallics 2011, 30, 4632−4642. (e) Chen, C.; Anselment, T.
M. J.; Frohlich, R.; Rieger, B.; Kehr, G.; Erker, G. Organometallics
̈
2011, 30, 5248−5257. (f) Anselment, T. M. J.; Wichmann, C.;
Anderson, C. E.; Herdtweck, E.; Rieger, B. Organometallics 2011, 30,
6602−6611. (g) Anselment, T. M. J.; Anderson, C. E.; Rieger, B.;
Boeddinghaus, M. B.; Fassler, T. F. Dalton Trans. 2011, 40, 8304−
8313. (h) Piche, L.; Daigle, J.-C.; Poli, R.; Claverie, J. P. Eur. J. Inorg.
Chem. 2010, 4595−4601. (i) Nagai, Y.; Kochi, T.; Nozaki, K.
Organometallics 2009, 28, 6131−6134.
13C{1H} NMR (151 MHz, CD2Cl2): δ 160.9 (C8), 148.9 (br, C1),
138.4 (br, C12), 135.0 (C3), 133.7 (C10), 133.0 (d, 2JPC = 10.2, C14),
1
132.9 (C16), 131.8 (d, JPC = 110.9, C13), 130.5 (C5), 129.1 (d,
3JCP = 12.6, C15), 128.7 (br, C4), 128.1 (br, C6), 128.0 (d, 1JCP = 53.7,
3
1
C2), 120.9 (d, JPC = 12.3, C11), 117.0 (d, JPC = 59.3, C7), 111.9
(d, 3JPC = 4.3, C9), 55.7 (Ar-OCH3), 1.1 (br, Pd-CH3). Anal. Calcd for
C39H36O6P2PdS: C, 58.47; H, 4.53. Found: C, 58.47; H, 4.81. MS
(FAB): m/z 802 [M]+, 785 [M − Me]+, 522 [M − OPPh3]+, 507
[M − OPPh3 − Me]+, 278 [OPPh3 + H]+. ATR-IR: 1/λ (cm−1) 3062
(w), 1587 (m), 1574 (m), 1476 (m), 1434 (m), 1253 (s), 1162
(s, νasym(SO3)), 1150 (s, ν(PO)), 1115 (s), 998 (s, νsym(SO3)), 755
(s), 723 (ss), 694 (s), 670 (s).
(5) Kochi, T.; Noda, S.; Yoshimura, K.; Nozaki, K. J. Am. Chem. Soc.
2007, 129, 8948−8949.
(6) Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.;
Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16030−16042.
(7) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am. Chem. Soc.
2009, 131, 14606−14607.
(8) Runzi, T.; Frohlich, D.; Mecking, S. J. Am. Chem. Soc. 2010, 132,
̈
̈
17690−17691.
X-ray Crystallography. Crystals of 1-OPBu3, 1-OPPh3, and
1-MeOH were grown as described in the corresponding experimental
section. X-ray diffraction analyses were performed at 100 K on a STOE
IPDS-II diffractometer equipped with a graphite-monochromated
(9) In this context note that recently the inhibition of ethylene
polymerization with 1-dmso by addition of saturated compounds with
various polar groups has been studied: Friedberger, T.; Wucher, P.;
Mecking, S. J. Am. Chem. Soc. 2012, 134, 1010−1018.
3135
dx.doi.org/10.1021/om3000339 | Organometallics 2012, 31, 3128−3137