alkynes and diynes5 resulting in triazoles with a high order
of regioselectivity. In addition to this intermolecular
azideÀalkyne 1,3-dipolar cycloaddition format, several
groups have also applied the intramolecular azideÀalkyne
1,3-dipolar cycloaddition strategy for the synthesis of
triazole linked amino acids/oligopeptides6 and triazole-
annulated polyheterocycles.7 However, most of these
intramolecular strategies predominantly involved termi-
nal alkynes in a multistep format8 to promote 1,3-dipolar
cycloaddition with limited applications9 to internal
alkynes. Ideally, an intramolecular 1,3-dipolar cyclo-
addition reaction in contrast to the intermolecular format
can be expected to furnish two annulated cyclic rings10
including a triazole ring in a single step and can thus be
considered as a useful strategy for generating molecular
complexity in a one-pot format. In our laboratory we had
been exploiting the nucleophilicities of the three N-1, C-3,
and C-2 positions in the indole by treating functionalized
indoles with alkynyl (electrophiles) components to access
annulated indoles, fused at either of the two positions
using one-pot strategies.11 In one-pot formats func-
tionalized indoles, in general, have remained relatively
underexplored.12 In continuation, we next directed our
effort to yet another class of functionalized indoles, i.e.
2-alkynyl-indoles, that will act as a combined source for
both indole (nucleophile) and an alkyne (electrophile)
moiety for the development of a one-pot strategy for the
synthesis of annulated indoles involving an intramolecular
1,3-dipolar cycloaddition reaction. To achieve this, we
envisaged that functionalizing position C-3 in the 2-alky-
nyl-indole with an azido arene moiety may enforce (due to
the close proximity of the azide and the alkyne moieties)
the formation of two annulated 7- and 5-membered het-
erocyclic rings via the intramolecular 1,3-dipolar cyclo-
addition reaction in a single step. Here, we report a fast and
versatile one-pot cascade intermolecularMichael addition-
intramolecular azide-internal alkyne 1,3-dipolar cycload-
dition reaction to furnish annulated tetracyclic indolo[2,3-c]-
[1,2,3]triazolo[1,5-a][1]benzazepines in good yields.
Our studies commenced with the development of a
methodology for the C-3 functionalization of 2-phenyl-
Table 1. Optimization for the Synthesis of C-3 Alkylated
Product 3aa
yield (%)
entry
catalyst
solvent
temp
of 3aa
1
2
3
4
5
6
7
8
9
10
Yb(OTf)3
toluene
toluene
MeCN
DMF
rt
10b
NR
61a
NR
NR
NR
NR
NR
<10b
55
c
À
rt
Yb(OTf)3
Yb(OTf)3
Sc(OTf)3
Zn(OTf)2
AgOTf
rt
rt
MeCN
MeCN
MeCN
MeCN
MeCN
MeCN
rt
rt
rt
Hg(OAc)2
Cu(OTf)2
Sc(OTf)3
rt
rt
50 °C
a Isolated yields. b Yields based on HPLC (C18 reversed-phase
column; 150 mm  4.6 mm; 5 μm). c Reaction carried out without
catalyst; NR = No Reaction. All reactions were carried out on a 1 mmol
scale with 10 mol % of Lewis acid in 5 mL of solvent at rt and monitored
for 12 h.
ethynyl-1H-indole 1aby treating it with a (E)-1-azido-2-(2-
nitrovinyl)benzene 2a. Among several methods described
in the literature13 for the C-3 functionalization of the
indoles under mild conditions, we proposed to use a Lewis
acid catalyzed Michael addition, and the results have
been summarized in Table 1. Accordingly, 1a was initially
treated with 2a in the presence of Yb(OTf)3 in toluene at rt,
and after 12 h of stirring a new product was obtained in
∼10% isolated yield with a molecular weight of 407 Da
(entry 1). The structure of the product was elucidated by
the combined use of1H and 13C NMR experimentsthat led
to its identification as 3-[1-(2-azido-phenyl)-2-nitro-ethyl]-
2-phenylethynyl-1H-indole 3aa arising from the C-3 alky-
lation of the indole. Carrying out the same reaction in the
absence of catalyst failed to yield 3aa (entry 2). Switching
the solvent from toluene to acetonitrile at rt in the presence
of Yb(OTf)3 furnished 3aa in 61% isolated yield (entry 3),
whereas carrying out the reaction in DMF at rt failed to
(5) (a) Mandadapu, A. K.; Sharma, S. K.; Gupta, S.; Krishna,
D. G. V.; Kundu, B. Org. Lett. 2011, 13, 3162–3165. (b) Monkowius,
U.; Ritter, S.; Konig, B.; Zabel, M.; Yersin, H. Eur. J. Inorg. Chem. 2007,
4597–4606. (c) Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi, A.;
Quarta, M. R.; Fittipaldi, M. Synthesis 2009, 3853–3859. (d) Fiandanese,
V.; Bottalico, D.; Marchese, G.; Punzi, A.; Capuzzolo, F. Tetrahe-
dron 2009, 65, 10573–10580. (e) Aizpurua, J. M.; Azcune, I.; Fratila,
R. M.; Balentova, E.; Aizpurua, M. S.; Miranda, J. I. Org. Lett. 2010, 12,
1584–1587.
(6) (a) Sai Sudhir, V.; Nasir Baig, R. B.; Chandrasekaran, S. Eur. J.
Org. Chem. 2008, 2423–2429. (b) Turner, R. A.; Oliver, A. G.; Scott
Lokey, R. Org. Lett. 2007, 9, 5011–5014.
(7) (a) Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2004, 45,
3725–3728. (b) Akritopoulou-Zanze, I.; Gracias, V.; Djuric, S. W.
Tetrahedron Lett. 2004, 45, 8439–8441.
(8) (a) Yanai, H.; Taguchi, T. Tetrahedron Lett. 2005, 46, 8639–8643.
(b) Majumdar, K. C.; Ray, K.; Ganai, S. Synthesis 2010, 2101–2105.
(9) For a recent review: Majumdar, K. C.; Ray, K. Synthesis 2011,
3767–3783.
(10) Kunick, C. Liebigs Ann. Chem. 1993, 10, 1141–1143.
(11) (a) Sharma, S. K.; Mandadapu, A. K.; Saifuddin, M.; Gupta, S.;
Agarwal, P. K.; Mandwal, A. K.; Gauniyal, H. M.; Kundu, B. Tetra-
hedron Lett. 2010, 51, 6022–6024. (b) Sharma, S. K.; Gupta, S.;
Saifuddin, M.; Mandadapu, A. K.; Agarwal, P. K.; Gauniyal, H. M.;
Kundu, B. Tetrahedron Lett. 2011, 52, 65–68. (c) Gupta, S.; Kumar, B.;
Kundu, B. J. Org. Chem. 2011, 76, 10154–10162. (d) Gupta, S.; Sharma,
S. K.; Mandadapu, A. K.; Gauniyal, H. M.; Kundu, B. Tetrahedron
Lett. 2011, 52, 4288–4291. (e) Sharma, S. K.; Mandadapu, A. K.;
Kumar, B.; Kundu, B. J. Org. Chem. 2011, 76, 6798–6805.
(12) For review, see: Sapi, J.; Laronze, J. Y. ARKIVOC 2004, 208–
222 and references cited therein.
(13) (a) Takayoshi, A.; Makiko, W.; Naota, Y. J. Org. Chem. 2011,
76, 2909–2912. (b) Epifano, F.; Genovese, S.; Rosati, O.; Tagliapietra,
S.; Pelucchini, C.; Curini, M. Tetrahedron Lett. 2011, 52, 568–571.
(c) Young, K. H.; Sungkyung, K.; Kyungsoo, O. Angew. Chem., Int.
Ed. 2010, 49, 4476–4478. (d) Jianwei, X.; Xinhai, Z.; Manna, H.; Fei, M.;
Man, W; Yiqian, W. Synth. Commun. 2010, 40, 3259–3267.
Org. Lett., Vol. 14, No. 7, 2012
1805