Y. Q. Ye et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2385–2387
5. Gordon, J. R.; Burd, P. R.; Galli, S. J. Immunol. Today 1990, 11, 458.
2387
6. Vassalli, P. Annu. Rev. Immunol. 1992, 10, 411.
7. Sieper, J.; Braun, J. Exper. Opin. Emerg. Drugs 2002, 2, 235.
8. Holgate, S. T. Cytokine 2004, 28, 152.
9. Brennan, F. M.; Chantry, D.; Jackson, A.; Maini, R.; Feldmann, M. Lancet 1989,
2(8657), 244.
10. Maini, R.; St Clair, E. W.; Breedveld, F.; Furst, D.; Kalden, J.; Weisman, M.;
Smolen, J.; Emery, P.; Harriman, G.; Feldmann, M.; Lipsky, P. Lancet 1999,
354(9194), 1932.
11. Xie, C.; Koshino, H.; Esumi, Y.; Onose, J.; Yoshikawa, K.; Abe, N. Bioorg. Med.
Chem. Lett. 2006, 16, 5424.
12. Ye, Y.-Q.; Koshino, H.; Onose, J.; Negishi, C.; Yoshikawa, K.; Abe, N.; Takahashi,
S. J. Org. Chem 2009, 74, 4642.
13. Ye, Y.-Q.; Koshino, H.; Onose, J.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett
2007, 9, 4131.
14. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
15. Horner, L.; Sturm, K. Liebigs Ann. Chem. 1955, 597, 1.
16. Huff, B. E.; Koenig, T. M.; Mitchell, D.; Staszak, M. A. Organic Syntheses;
Wiley&Sons: NewYork, 2004, pp.102.
17. This coupling reaction in alkaline aqueous solutions was accompanied by
hydrolysis of TBS group to afford 7 while the TBS group was retained under
aprotic conditions (e.g., preparation of 11 in Scheme 2).
18. As initial attempts for Suzuki–Miyaura coupling of 5 and 6, Pd(Ph3P)4 was
employed as a catalyst. A considerable amount of the corresponding biphenyl,
however, was always isolated along with the desired p-terphenyl 7. These
results made us to conceive the coupling using different types of boronic acids
as shown in Scheme 2.
Figure 2. TNF-a Production Inhibition of 2 and 7.
19. Spectral data of representative compounds
Compound 2: mp >270 °C (n-hexane-ether-methanol); 1H NMR (400 MHz, d6-
acetone): d 8.35 (2H, s), 7.08 (4H, d, J = 8.8 Hz), 6.91 (4H, d, J = 8.8 Hz), 6.65 (2H,
s), 1.93 (6H, s); 13C NMR (100 MHz, d6-acetone): d 157.21, 141.05, 132.36,
in 12 was removed to afford 8. Upon treatment with 3-bromo-1-
propyne and sodium hydride, 8 gave a key intermediate 13.19
1,3-Dipolar Huisgen cycloaddition23 of 13 with 1424 in the pres-
ence of copper sulfate and sodium ascorbate provided a coupling
product, which was treated with TFA, giving a fluorescent probe
1619 in 48% yield from 13. Similarly, reaction of 13 with 1525 pro-
vided a coupling product in a good yield. The final deprotection un-
der acidic conditions, however, resulted in a complex mixture. On
the other hand, the click reaction after deprotection of 13 pro-
ceeded without trouble to give the desired product 1719 in good
yield. Both compounds showed an inhibitory activity against
129.64, 128.95, 126.50, 115.97, 17.41; HRMS (ESI) calcd for
C20H18O4Na
[M+Na]+ 345.1103, found 345.1104.
Compound 13: 1H NMR (500 MHz, CDCl3): d 7.24 (2H, J = 8.8 Hz), 7.22 (2H, d,
J = 8.8 Hz), 7.10 (2H, d, J = 8.8 Hz), 7.04 (2H, J = 8.8 Hz), 5.22 (2H, s), 4.82 (2H, s),
4.81 (2H, s), 4.74 (2H, br s), 3.51 (3H, s), 2.92 (3H, s), 2.89 (3H, s), 2.54 (1H, t,
J = 2.4 Hz), 2.04 (3H, s), 2.03 (3H, s); 13C NMR (125 MHz, CDCl3): d 156.4, 156.1,
145.3, 136.0, 135.9, 131.9, 131.8, 131.67, 131.65, 131.6, 131.4, 115.8, 114.4,
98.88, 98.86, 94.6, 78.6, 75.4, 56.80, 56.77, 56.0, 55.9, 17.94, 17.92; HRMS (ESI+)
calcd for C29H32O7Na [M+Na]+ 515.2046, found 515.2042.
Compound 16: 1H NMR (500 MHz, CDCl3): d 7.67 (1H, s), 7.40 (1H, d, J = 8.5 Hz),
7.23 (2H, d, J = 8.8 Hz), 7.17 (2H, d, J = 8.5 Hz), 7.10 (2H, d, J = 8.8 Hz), 6.97 (2H,
d, J = 8.5 Hz), 6.87 (1H, dd, J = 8.5, 2.5 Hz), 6.85 (1H, d, J = 2.5 Hz), 6.30 (1H, t,
J = 1.5 Hz), 5.62 (1H, br s), 5.27 (2H, s), 5.26 (2H, br d), 5.01 (1H, s), 4.97 (1H, s),
4.40 (2H, t, J = 7.1 Hz), 3.88 (3H, s), 2.47 (2H, t, J = 7.3 Hz), 2.01–1.96 (2H, m),
1.971 (3H, s), 1.967 (3H, s), 1.78–1.72 (2H, m), 1.46–1.39 (2H, m); 13C NMR
(125 MHz, CDCl3): d 172.4, 162.9, 161.0, 157.6, 155.5, 155.2, 149.3, 144.2,
138.62, 138.56, 131.55, 131.45, 129.2, 128.4, 127.41, 127.34, 126.75, 126.74,
124.4, 122.7, 115.9, 115.1, 112.7, 110.5, 109.8, 101.2, 62.1, 61.1, 55.8, 50.1, 33.6,
29.9, 25.9, 24.1, 17.17, 17.15; HRMS (ESI+) calcd for C40H39O9N3Na [M+Na]+
728.2584, found 728.2596.
TNF-
a production from RBL-2H3 cells at a promising level
(IC50 = 0.55 nM for 16 and 8.15 nM for 17). These bioprobes are ex-
pected to be a tool for identifying a vialinin A target. Now the re-
search is under investigation.
We succeeded in synthesizing an advanced analog 2 with a
comparable inhibitory activity to that of vialinin A (1), and trans-
forming it to a couple of bioprobes 16 and 17. The strategy devel-
oped here provides versatility for preparing a variety of functional
molecules such as a photoactive probe as well as 16 and 17 and
therefore is useful in medicinal chemistry.
Compound 17: ½a 2D3
ꢁ
+16.8 (c = 0.11, MeOH); 1H NMR (500 MHz, d4-methanol):
d 8.08 (1H, s), 7.15 (2H, d, J = 8.8 Hz), 7.08 (2H, d, J = 8.8 Hz), 7.05 (2H, d,
J = 8.6 Hz), 6.87 (2H, d, J = 8.6 Hz), 5.22 (2H, s), 4.46 (1H, dd, J = 7.9, 4.9 Hz), 4.42
(2H, t, J = 7.1 Hz), 4.27 (1H, dd, J = 7.9, 4.4 Hz), 3.18–3.08 (3H, m), 2.89 (1H, dd,
J = 12.7, 4.9 Hz), 2.68 (1H, d, J = 12.7 Hz), 2.18 (2H, t, J = 7.1 Hz), 1.95–1.87 (2H,
m), 1.91 (3H, s), 1.90 (3H, s), 1.75–1.37 (12H, m); 13C NMR (125 MHz, d4-
methanol): d 175.9, 166.1, 158.7, 157.5, 145.2, 141.41, 141.37, 132.7, 132.6,
132.4, 130.23, 130.18, 129.6, 127.4, 127.3, 125.3, 116.2, 115.8, 63.4, 62.5, 61.6,
57.0, 51.3, 41.0, 40.2, 36.8, 31.2, 30.2, 29.8, 29.5, 27.3, 27.1, 26.9, 17.48, 17.46;
HRMS (ESI+) calcd for C39H48O6N6SNa [M+Na]+ 751.3254, found 751.3250.
20. Kawada, K.; Ohtani, M.; Suzuki, R.; Arimura, A. US-Patent, 7,101,915, 2006.
21. We had already gained the results of the inhibitory activity of vialinin A related
compounds including its artificial regioisomers.4,11–13 Furthermore, after
several experiments, we found that the reactivity of two hydroxyl groups on
the central benzene ring of 2 was low and that an efficient alkylation at such
position was difficult. These results made us to choose the position of OH group
for introduction of the tag without SAR studies on dimethyl analogs of 1 other
than 2 and 7.
Acknowledgments
We are grateful to Ms. A. Yoshida (technical assistant), Drs. T.
Nakamura and Y. Hongo (mass spectral measurements) in RIKEN.
This work was supported by the Chemical Genomics Project (RI-
KEN). N. A. acknowledges the Advanced Research Project of Tokyo
University of Agriculture.
References and notes
22. Ye, Y.-Q.; Koshino, H.; Onose, J.; Yoshikawa, K.; Abe, N.; Takahashi, S. Org. Lett.
2009, 11, 5074.
23. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40,
2004.
1. Xie, C.; Koshino, H.; Esumi, Y.; Takahashi, S.; Yoshikawa, K.; Abe, N. Biosci.
Biotechnol. Biochem. 2005, 69, 2326.
2. Radulovic, N.; Quang, D. N.; Hashimoto, T.; Nukada, M.; Asakawa, Y.
Phytochemistry 2005, 66, 1052.
24. Compound 14 was prepared from 6-azidohexanoic acid26 and 4-bromomethyl-
7-methoxycoumarin.
25. Inverarity, I. A.; Viguier, R. F. H.; Cohen, P.; Hulme, A. N. Bioconjugate Chem.
2007, 18, 1593.
3. Norikura, T.; Fujiwara, K.; Narita, T.; Yamaguchi, S.; Morinaga, Y.; Iwai, K.;
Matsue, H. J. Agric. Food Chem. 2011, 59, 6974.
26. Charon, D.; Mondange, M.; Pons, J.-F.; Le Blay, K.; Chaby, R. Bioorg. Med. Chem.
1998, 6, 755.
4. Onose, J.; Xie, C.; Ye, Y.-Q.; Takahashi, S.; Koshino, H.; Yasunaga, K.; Abe, N.;
Yoshikawa, K. Biol. Pharm. Bull. 2008, 31, 831.