P. Pramitha, D. Bahulayan / Bioorg. Med. Chem. Lett. 22 (2012) 2598–2603
2603
(700 mg) are taken in dimethyl acetamide (4 mL). To this, K2CO3 (1 g) was
added and stirred at room temperature for 4 h. The reaction mixture was then
diluted with water. The white precipitate obtained was filtered and washed
repeatedly with water to afford the pure azide 3e (1.06 g, 97%).
O
O
O
O
O
O
O
O
O
16. (a) Ugi, I. Angew. Chem., Int. Ed. Engl. 1962, 1, 8; (b) Ugi, I.; Domling, A.; Horl, W.
Endeavour 1994, 18, 115; (c) Ugi, I.; Domling, A.; Gruber, B.; Almstetter, M.
Croat. Chem. Acta 1997, 70, 631; (d) Domling, A. Chem. Rev. 2006, 106, 17.
17. Typical experimental procedure for the synthesis of Ugi chloride 4i: An equi-
molar amount of 2-fluoro benzaldehyde (1.24 g, 0.01 mol) and 4-bromo aniline
are taken in dichloromethane (8 mL) and stirred in room temperature for
20 min. to form the schiff-base. To this, one equivalent of tert-butyl isocyanide
(0.83 g, 0.01 mol) and chloroacetic acid (0.95 g, 0. 01 mol) were added and
stirred at room temperature. The reaction was monitored by TLC and found to
complete after 48 h. The solvent was then evaporated off under vacuum. The
crude product obtained was washed with petroleum ether (5 Â 15 mL) to
10
9
8
Scheme 3. Structure of alkynes 8, 9 and 10 used for the click reactions.
Supplementary data
Supplementary data associated with this article can be found, in
afford the pure Ugi chloride 4i (4.01 g, 88%). FT-IR, KBr, cmax: 3334.3, 2963.1,
1690.3, 1658.5, 1540.9, 1485.9, 1455.0, 1382.7, 1363.4, 1256.4, 1232.3, 1014.4,
759.8, 629.6; 1H NMR (400 MHz, DMSO-d6): d 7.982 (s, 1H), 7.551–6.869 (m,
8H), 6.236 (s, 1H), 4.106–3.899 (m, 2H), 1.255 (s, 9H); MS: m/z Calcd for
References and notes
C
20H21BrClFN2O2, 455.7; Found, 457.1.
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
2. (a) Sreeman, K. M.; Finn, M. G. Chem. Soc. Rev. 2010, 39, 1252; (b) Droumagueta,
C. L.; Wang, C.; Wang, Q. Chem. Soc. Rev. 2010, 39, 1233; (c) El-Sagheer, A. H.;
Brown, T. Chem. Soc. Rev. 2010, 39, 1388; (d) Manzenrieder, F.; Luxenhofer, R.;
Retzlaff, M.; Jordan, R.; Finn, M. G. Angew. Chem., Int. Ed. 2011, 50, 2601; (e)
Suzuki, T.; Ota, Y.; Kasuya, Y.; Mutsuga, M.; Kawamura, Y.; Tsumoto, H.;
Nakagawa, H.; Finn, M. G.; Miyata, N. Angew. Chem., Int. Ed. 2010, 49, 6817; (f)
Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G. Angew. Chem., Int. Ed. 2009, 48, 9879.
3. (a) Binder, W. H.; Kluger, C. Curr. Org. Chem. 2006, 10, 1791; (b) Johnson, J. A.;
Finn, M. G.; Koberstein, J. T.; Turro, N. J. Macromol. Rapid Commun. 2008, 29,
1059; (c) Lundberg, P.; Hawker, C. J.; Hult, A.; Malkoch, M. Macromol. Rapid
Commun. 2008, 29, 998.
4. (a) Buckle, D. R.; Rockell, C. J. M. J. Chem. Soc., Perkin Trans. 1 1982, 627; (b)
Buckle, D. R.; Outred, D. J.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med. Chem.
1983, 26, 251; (c) Buckle, D. R.; Rockell, C. J. M.; Smith, H.; Spicer, B. A. J. Med.
Chem. 1986, 29, 2269.
5. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.;
Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris,
J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
18. Typical experimental procedure for the synthesis of Ugi azide 5d: An equi-
molar amount of the corresponding Ugi chloride (1.29 g, 0.0025 mol) and
sodium azide (700 mg) are taken in dimethyl acetamide (4 mL). To this
K2CO3 (1 g) was added and stirred at room temperature for 4 h. The
reaction mixture was then diluted with water. The white precipitate
obtained was filtered and washed repeatedly with water to afford the
pure azide 5d (1.24 g, 95%). FT-IR, KBr,
9, 1684. 5, 1658. 4, 1536. 0, 1486. 8, 1391. 3, 1267. 2, 1015. 3, 740. 5; 1H
NMR (400 MHz, DMSO-d6): 8.089 (s, 1H), 7. 547–7.528 (d, J = 7.6 Hz,
2H), 7. 129–7.092 (m, 4H), 6. 938–6. 920 (d, J = 7.2 Hz, 2H), 6.22 (s, 1H),
3. 889–3.542 (m, 2H), 1. 265 (s, 9H); MS: m/z Calcd for 20H21Br2N5O2,
523.22; Found, 524.0. Compound 5e: FT-IR, KBr, cmax 3304. 4, 3072.0,
2972.7, 2101.0, 1643.8, 1552.4, 1220.7, 1040.4, 948.8, 749.209; 1H NMR
(400 MHz, DMSO-d6): 8.096–8.073 (d, J = 9.2 Hz, 1H), 7.373–6.843 (m,
9H), 6.341 (s, 1H), 4.902–4.577 (m, 2H), 4.206-3.914 (m, 2H) 1. 162 (s,
cmax: 3349.7, 3059.5, 2965.0, 2104.
d
C
:
d
9H). Compound 5g: FT-IR, KBr, cmax
: 3392.2, 3343.9, 2965.0, 2928.4,
2103.9, 1686.4, 1655.0, 1538.9, 1485.9, 1391.4, 1257.4, 1014.4, 743.4; 1H
NMR (400 MHz, DMSO-d6): d 8.081 (s, 1H), 7.377–7.358 (d, J = 7.6 Hz, 2H),
6.950–6.931 (d, J = 7.6 Hz, 2H), 7.206–7.170 (m, 2H), 7.107–7.070 (m, 2H),
6.628 (s, 1H), 3.913–3.522 (m, 2H), 1.266 (s, 9H).
6. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; De Clercq, E.; Perno, C.-F.;
Karlsson, A.; Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185.
7. Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6, 2696.
8. Kolb, H. C.; Sharpless, B. K. Drug Discovery Today 2003, 8, 1128.
9. (a) Brik, A.; Alexandratos, J.; Lin, Y.-C.; Elder, J. H.; Olson, A. J.; Wlodawer, A.;
Goodsell, D. S.; Wong, C.-H. ChemBioChem 2005, 6, 1167; (b) Bock, V. D.;
Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51.
19. General procedure for the Cu (I) 1, 3-dipolar cycloaddition reactions: An equi-
molar amount of prop-2-yn-1-yl 2-oxo-2H-chromene-3-carboxylate
1
(57.05 mg, 0.25 mmol) and the Ugi azide 5d (130.8 mg, 0.25 mol) are
dissolved in minimum amount of DMSO. To this, 2 ml of t-BuOH, 1 ml of
water, CuSO4Á5H2O (200 mg) and sodium ascorbate (150 mg) are added and
stirred in room temperature for 12 h. and then poured in to cold water. The
precipitated click product was filtered, washed with water and dried under
10. Justin, M. H.; Kent, K. Chem. Soc. Rev. 2010, 39, 1325.
vacuum to afford 7d in pure form (180 mg, 97%). FT-IR, KBr,
cmax: 3312.1,
11. (a) Kayser, O.; Kolodziej, H. Z. Naturforsch 1999, 54c, 169–174; (b) Sharma, R.
C.; Parashar, R. K. J. Inorg. Biochem. 1988, 32, 163; (c) Garazd, Y. L.; Kornienko, E.
M.; Maloshtan, L. N.; Garazd, M. M.; Khilya, V. P. Chem. Nat. Prod. 2005, 41, 508;
(d) Ong, E. B.; Watanabe, N.; Saito, A.; Futamura, Y.; Abd El Galil, K. H.; Koito,
A.; Najimudin, N.; Osada, H. J. Biol. Chem. 2011, 286, 14049.
2970.8, 2933.2, 2107.8, 1773.3, 1706.7, 1671.9, 1610.3, 1565.9, 1484.9, 1391.4,
1206.3, 764.6; 1H NMR (400 MHz, DMSO-d6): d 8.756 (s, 1H), 8.127 (S, 1H),
8.028 (s, 1H), 7.924–7.904 (d, J = 8.0 Hz 2H),7.742–7.700 (m, 1H), 7.546–7.527
(d, J = 7.6 Hz, 1H), 7.424–7.362 (m, 3H), 7.114–7.085 (m, 3H), 6.923–6.905 (d,
J = 7.2 Hz, 2H), 6.260 (s, 1H), 5.332 (s, 2H), 5.169–4.312 (m, 2H), 1.252 (s, 9H);
MS: m/z Calcd for C33H29Br2N5O6, 751.4; Found, 752.0.
12. Burlison, J. A.; Neckers, L.; Smith, A. B.; Maxwell, A.; Blagg, B. S. J. J. Am. Chem.
Soc. 2006, 128, 15529.
20. (a) Isanbor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303; (b) Begue, J.-P.;
Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992; (c) Kirk, K. L. J. Fluorine
Chem. 2006, 127, 1013; (d) Bohm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.;
Kuhn, B.; Muller, K.; Obst-Sander, U.; Stahl, U. ChemBioChem 2004, 5, 637.
21. For recent reviews see: (a) Brunet, V. A.; O’GHagan, D. Angew. Chem. 2008, 120,
1198. Angew. Chem., Int. Ed. 2008, 47, 1179; (b) Bobbio, C.; Gouverneur, V. Org.
Biomol. Chem. 2006, 4, 2065; (c) Pihko, P. M. Angew. Chem. 2006, 118, 558.
Angew. Chem., Int. Ed. 2006, 45, 544; (d) Prakash, G. K. S.; Beier, P. Angew. Chem.
2006, 118, 2228. Angew. Chem. Int. Ed. 2006, 45, 2172; (e) Ma, J.-A.; Cahard, D.
Chem. Rev. 2004, 104, 6119; Lam, Y.-h.; Bobbio, C.; Cooper, I. R.; Gouverneur, V.
Angew. Chem., Int. Ed. 2007, 46, 5106.
13. (a) Bahulayan, D.; Das, S. K.; Iqbal, J. J. Org. Chem. 2003, 68, 5735; (b) Shinu, V.
S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D. Tetrahedron Lett. 2009, 50,
4838; (c) Shinu, V. S.; Pramitha, P.; Bahulayan, D. Tetrahedron Lett. 2011, 52,
3110.
14. Typical experimental procedure for the synthesis of prop-2-yn-1-yl 2-oxo-2H-
chromene-3-carboxylate 1: A solution of Coumarin-3-carboxylic acid (1.9 g,
0.01 mol), Propargyl alcohol (0.56 ml, 0.01 mol), N,N-dicyclohexyl cabodiimide
(2.3 g, 011 mol), and 4-dimethylaminopyridine (0.122 g, 0.001 mol) in
dichloromethane was stirred at room temperature for 6 h. After 6 h, the
precipitated N,N-dicyclohexylurea was filtered off and the filtrate was washed
with water, 5% acetic acid, and again with water. It was then dried over
magnesium sulphate and the solvent was evaporated. The residue obtained
was washed with petroleum ether to afford the ester 1 (2.4 g, 96%). FT-IR, KBr,
22. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
´
Ed. 2002, 41, 2596; (b) Estelle, M.; Gerardin-Charbonnier, C.; Selve, C. J. Fluorine
Chem. 2005, 126, 715.
c
max: 3229.2, 3057.6, 2929.3, 2851.2, 2118.4, 1749.9, 1713.4, 1615.1, 1563.9,
23. (a) Giulio, V.; Alessandro, P. Drug Discovery Today 2008, 13, 285; (b) Arup, K. G.;
Vellarkad, N. V.; John, J. W. J. Comb. Chem. 1999, 1, 55; (c) Martin, Y. A. J. Med.
Chem. 2005, 48, 3164.
24. Macdonald, C. M.; Turcan, R. G. Sites of Drug Metabolism, Prodrugs and
Bioactivation In Comprehensive Medicinal Chemistry; Hansch, C., Sammes, P. G.,
Taylor, J. B., Ramsden, C. A., Eds.; Pergamon Press: London, 1990; Vol. 5,.
1370.2, 1240.0, 1213.0, 1035.6, 999.9, 770.4; 1H NMR (400 MHz, DMSO-d6): d
8.826 (s,1H), 7.971–7.963 (m, 1H), 7.778–7.733 (m,1H), 7.459–7.400 (m, 2H),
4.942–4.937 (d, J = 2.0 Hz, 2H), 3.327 (s, 1H); 13C NMR (100 MHz, DMSO-d6): d
161.8, 155.8, 154.7, 134.8, 130.5, 124.9, 117.8, 116.7, 116.2, 78.2, 78.1, 52.806;
MS: m/z 229.1 Calcd for C13H8O4, 228.2; Found, 229.1.
15. Typical experimental procedure for the synthesis of b-keto-amide azide 3e: An
equi-molar amount of b-ketoamide (1.09 g, 0.0025 mol) and sodium azide