instantaneous formation of a deep red solution. 1H NMR
spectroscopy of this solution (Figure 1C) indicated the
formation of thermodynamically stable[2]pseudorotaxane
4 through changes in the chemical shifts of diagnostic
proton signals Hb-He. At 300 MHz and 298 K dethreading
of macrocycle 3 onto and off of thread 1 is comparable
1
to the H NMR time scale, leading to significant broad-
ening of resonances for bothcompounds. A better resolved
spectrum of [2]pseudorotaxane 4 is obtained at 263 K
(Figure 1C) where the dethreading rate is decreased.
Further evidence of a self-assembling hostꢀguest complex
is obtained from UV/vis spectroscopy (see Supporting
Information). A prominent charge-transfer (CT) band is
observed at 487 nm for a 0.001 M CHCl3 solution of 1 and
3 (ε = 143 Mꢀ1 cmꢀ1).
Adding 2.2 equiv of thiol-functionalized stopper 2 to a
0.1 M CDCl3 solution of [2]pseudorotaxane 4 at 273 K in
the presence of 0.03 equiv of Et3N results in the formation
of mechanically interlocked [2]rotaxane 5 (Scheme 1B) in
65% isolated yield. The formation of mechanically inter-
locked [2]rotaxane 5 was confirmed (see Supporting Infor-
mation) by accurate mass APCI mass spectrometric ana-
lysis: m/z = 2653.28 [M þ Na]þ and 1338.13 [M þ 2Na]2þ
compared with calculated values of 2653.28 and 1338.14,
respectively. It is interesting to note that the relative
intensity of the [M þ 2Na]2þ peak of [2]rotaxane 5 is twice
that of the [M þ Na]þ peak. Super- and supramolecular
assemblies of NDI derivatives with DNP38C10 are
known6f,19h to interact with alkali metals in solution. Mass
spectrometric analysis of [2]rotaxane 5 suggests these
interactions persist in the gas phase as well. Mass spectra
of the macrocycle and thread components in isolation
show weak relative intensities of [M þ 2Na]2þ peaks (see
Supporting Information).
Figure 1. Partial 1H NMR spectra (298 K unless otherwise
noted) of thread 1 (A), macrocycle 3 (B), [2]pseudorotaxane 4
(C) (263 K), and [2]rotaxane 5 (D). Protons are labeled as in
Scheme 1. Uncomplexed peaks are designated as “(uc)”.
dibenzo-24-crown-8 hosts (Ka = 102ꢀ104 M
)
ꢀ1 20 or those
between bipyridinium derivatives with DNP38C10 hosts
(Ka = 104ꢀ105 Mꢀ1).21 NDI derivatives are, however,
stable to base and therefore suitable for base catalyzed
thiol-maleimide reactions whereas dialkylammonium
and N-benzylbipyridinium guests are susceptible to
deprotonation6b or nucleophilic attack,22 respectively.
Mixing a 1:1 molar ratio of 1 and DNP38C10 macro-
cycle 3 in CHCl3 at ambient temperature results in the
The 1H NMR spectrum of 5 (Figure 1D) displays well-
resolved, sharp peaks communsurate with a kinetically
stable, interlocked species. Characteristic upfield shifts
of protons Hc, Hd, and He (0.92, 0.52, and 0.42 ppm,
respectively) are observed and are indicative18b,d,19g of
[π π] stacking interactions. An upfield shift of 0.52 ppm
3 3 3
is also observed for the aromatic proton Hb of the NDI
guest. The disappearance of maleimide proton Ha and the
formation of new signals in the 3.2ꢀ2.5 ppm region
indicate the formation of a thiol-maleimide Michael
adduct. Investigation of [2]rotaxane 5 by UV/vis spectro-
scopy reveals a charge-transfer band at 497 nm with
a molar extinction coefficient of ε = 714 Mꢀ1 cmꢀ1, which
is consistent18c,19e with other interlocked crown etherꢀ
naphthalene diimide systems.
(19) (a) Hamilton, D. G.; Sanders, J. K. M.; Davies, J. E.; Clegg, W.;
Teat, S. J. Chem. Commun. 1997, 897–898. (b) Try, A. C.; Harding,
M. H.; Hamilton, D. G.; Sanders, J. K. M. Chem. Commun. 1998, 723–
724. (c) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M.
Chem.;Eur. J. 1998, 4, 608–620. (d) Hansen, J. G.; Feeder, N.;
Hamilton, D. G; Gunter, M. J.; Becher, J.; Sanders, J. K. M. Org. Lett.
2000, 2, 449–452. (e) Hamilton, D. G.; Montalti, M.; Prodi, L.; Fontani,
M.; Zanello, P.; Sanders, J. K. M. Chem.;Eur. J. 2000, 6, 608–617. (f)
Gunter, M. J.; Bampos, N.; Johnstone, K. D.; Sanders, J. K. M. New J.
Chem. 2001, 25, 166–173. (g) Iijima, T.; Vignon, S. A.; Tseng, H.-R.;
Jarrosson, T.; Sanders, J. K. M.; Marchioni, F.; Venturi, M.; Apostoli,
E.; Balzani, V.; Stoddart, J. F. Chem.;Eur. J. 2004, 10, 6375–6392. (h)
Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders, J. K. M.
Dalton Trans. 2007, 3864–3884.
One of the primary motivations of this work is the
development of efficient methods for integrating stimuli-
resonsive interlocked molecules with biological systems.
(21) (a) Asakawa, M.; Ashton, P. R.; Ballardini, R.; Balzani, V.;
Belohradsky, M.; Gandolfi, M. T.; Kocian, O.; Prodi, L.; Raymo, F. M.;
Stoddart, J. F.; Venturi, M. J. Am. Chem. Soc. 1997, 119, 302–310. (b)
Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Langford, S. J.;
Menzer, S.; Prodi, L.; Stoddart, J. F.; Venturi, M.; Williams, D. J.
Angew. Chem., Int. Ed. Engl. 1996, 35, 978–981.
(20) (a) Ashton, P. R.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi,
ꢀ
ꢀ
A.; Fyfe, M. C. T.; Gandolfi, M. T.; Gomez-Lopez, M.; Martınez-Dıaz,
´ ´
M.-V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.; White,
A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1998, 120, 11932–11942. (b)
Jones, J. W.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125, 7001–7004. (c)
Ghosh, K.; Yang, H.-B.; Northrop, B. H.; Lyndon, M. M.; Zheng,
Y.-R.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2008, 130,
5320–5334.
(22) Spruell, J. M.; Dichtel, W. R.; Heath, J. R.; Stoddart, J. F.
Chem.;Eur. J. 2008, 14, 4168–4177.
2084
Org. Lett., Vol. 14, No. 8, 2012