M.S. Masoud et al. / Journal of Molecular Structure 1014 (2012) 17–25
25
[5] H.C. Lan, L.Y. Charn, Y.G. Chin, C.H. Yin, Food Chem. 103 (2007) 528–535.
[6] J. Kinjo, T. Nagao, T. Tanaka, G. Nonaka, M. Okawa, T. Nohara, H. Okabe, J. Biol.
Pharm. Bull. 25 (2002) 1238–1240.
via the double dilution technique [47]. All compounds were dis-
solved in DMSO. Five concentrations were prepared for each com-
pound (2, 4, 8, 16 and 32 lg/ml). The bacteria were incubated at
[7] K. Jittawan, Food Chem. 110 (2008) 881–890.
[8] R.F. Hurrell, M. Reddy, J. Nutr. 81 (1999) 289–295.
[9] J.D. Cook, M.B. Reddy, R.F. Hurrell Am, J. Clin. Nutr. 61 (1995) 800–804.
[10] N. Okabe, H. Kyoyama, M. Suzuki, J. Acta Cryst. Sect. E57 (2001) o764–o766.
[11] N. Fatima, Z.T. Maqsood, S.A. Kazmi, J. Chem. Soc. Pac. 24 (2002) 49–56; 20
(1998) 295–298.
[12] A.S. Li, B. Bandy, S.S. Tsang, A.J. Davison, J. Free Rad. Res. 33 (2000) 551–566.
[13] R.B. Sorkaz, I. Mazol, J. Biosci. 49 (2000) 881–894.
[14] M.D. Agarwal, C.S. Bhandari, M.K. Dixit, N.C. Sogani, J. Inst. Chem. 49 (1977)
124–126.
37 °C for 24 h in nutrient broth medium, however, the yeast was
incubated in malt extract broth for 48 h. MIC was considered at
the lowest concentration causing full inhibition of the test organ-
ism growth. MIC values for tested compounds for different micro-
organisms are given in Table 9. The data allow the following
observations and conclusions:
[15] M.S. Masoud, A.F. El-Husseiny, M.M. Abd El-Ghany, H.H. Hammud Bull, Fac.
Sci. Alex. Univ. 44 (2006) 41–54.
[16] E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.
[17] M.S. Masoud, T.S. Kasem, M.A. Shaker, A.E. Ali, J. Therm. Anal. Calorimetr. 84
(2006) 549–555.
[18] M.S. Masoud, S.A. Abou El-Enein, H.A. Motoweh, A.E. Ali, J. Therm. Anal.
Calorimetr. 75 (2004) 51–61.
[19] M.L. Dhar, O. Singh, J. Therm. Anal. 37 (1991) 259–266.
[20] E. Koch, Thermochim. Acta 94 (1985) 43–46.
[21] A.J. Ivana, V.S. Zoran, S.D. Enis, M.N. Jovan, J. Nano Scale Res. Lett. 5 (2010) 81–
88.
[22] A. Kula, J. Therm. Anal. Calorimetr. 75 (2004) 79–86.
[23] M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.M. Ramadan, Can. J. Anal. Sci.
Spectrosc. 50 (2005) 175–188.
[24] A.T.T. Hsieh, R.M. Sheahan, B.O. West, Aust. J. Chem. 28 (1975) 885–891.
[25] S.P.M. Glynn, J.K. Swith, J. Mol. Spectra 6 (1961) 164–172.
[26] L.H. Jones, Spectrochim. Acta 15A (1959) 409–411.
[27] M.B.H. Howlader, M.S. Islam, M.R. Karim, Indian J. Chem. 39A (2000) 407–409.
[28] A. Sreekanth, M. Joseph, H.K. Fun, M.R.P. Kurup, Polyhedron 25 (2006) 1408–
1411.
(a) C. albicans was found to be resistant for all investigated
compounds.
(b) It seems that the free legend H5L4 is inactive, but its copper
complex is of highest activity. So, the copper plays a major
role in activity. Compounds with noticeable activity may
be considered a start point for development of some new
antimicrobial agents.
(c) It is observed that uranyl complex has higher activity [47].
Such increased activity of the metal chelates could be
explained on the basis of overtone’s concept and chelating
theory [47–49]. On chelating, the polarity of the metal ion
is reduced to a greater extent due to the overlap of the leg-
end orbital and partial sharing of the positive charge of
metal ion with the donor groups. Further, it increases the
delocalization of p- and d- electrons over the whole chelate
and enhances the lipophilicity of the complex. The increased
lipophilicity enhances the penetration of the complexes into
lipid membranes and blocking of metal binding sites on the
enzymes of the microorganism.
[29] M.S. Masoud, E.A. Khalil, A.M. Ramadan, Y.M. Gohar, A. Sweyllam,
Spectrochim. Acta 67A (2007) 669–677.
[30] M.S. Masoud, H.A. Motaweh, A.E. Ali, Indian J. Chem. 40A (2001) 733–737.
[31] P.G. Prakash, J.L. Rao, J. Mater. Sci. 39 (2004) 193–200.
[32] U. El- Ayaan, M.M. Youssef, S. Al-Shihry, J. Mol. Struct. 936 (2009) 213–219.
[33] F. Billes, I.M. Ziegler, P. Bombicz, J. Vib. Spectrosc. 43 (2007) 193–202.
[34] I.M. Ziegler, F. Billes, J. Mol. Struct. 618 (2002) 259–265.
[35] D. Slawins Ka, K. Polewski, P. Role Wski, J. Slawin Ski, J. Int. Agrophys. 21
(2007) 199–208.
4. Conclusion
[36] M.S.E. Ali, E.M. Fawzy, Spectrochim Acta. 60A (2004) 2807–2817.
[37] M.S. Masoud, A.E. Ali, R.H. Mohamed, A.A. Mostafa, Spectrochim. Acta 62A
(2005) 114–2119.
[38] M.M. Aly, N.I. Al-Shatti, Trans. Met. Chem 23 (1998) 361–369.
[39] H.A. Dessouki, H.M. Killa, A. Zaghloul, Spectrochim. Acta 42A (1986) 631–635.
[40] M.S. Masoud, G.B. Mohamed, Y.H. Abdul Razek, A.E. Ali, F.N. Khiry,
Spectrochim. Lett. 35 (2002) 377–413.
[41] M.S. Masoud, G.B. Mohamed, Y.H. Abdul-Razek, A.E. Ali, F.N. Khairy, J. Kor.
Chem. Soc. 46 (2002) 99–116.
[42] M.S. Masoud, Chemistry 40 (2010) 1–4.
Gallic acid and its azo derivatives were of distinctive behavior.
This is because the variety of the geometry of their formed com-
plexes. This was reflected in various studies, such as thermal anal-
ysis and biological activity. Due to the lack of publishing about
these complexes, we recommend to do intensive studies of the cur-
rent work subject to explore all the characteristics of such com-
plexes and the possibility of applied use.
[43] M.S. Masoud, A.A. Soayed, A.E. Ali, Spectrochim. Acta 60A (2004) 1907–1915.
[44] R. Iordanova, E. Lefterova, I. Uzunov, Y. Dimitriev, D. Klissurski, J. Therm. Anal.
Calorimetr. 70 (2002) 393–404.
[45] M.S. Celej, S.A. Dassie, M. Gonzalez, M.L. Bianconi, G.D. Fidelio, J. Anal.
Biochem. 350 (2006) 277–284.
[46] H. Mcphillips, D.Q. Craig, P.G. Royall, V.L. Hille, Int. J. Pharm. 180 (1999) 83–90.
[47] B.G.S. Bodeis, R.D. Walker, D.G. White, S. Zhao, P.F. Mcdermott, J. Meng, J.
Antimicrob. Chemother. 50 (2002) 487–494.
[48] E. Canpolat, M. Kaya, S. Gur, Tur. J. Chem. 28 (2004) 235–242.
[49] B.G. Tweedy, Phytopathology 55 (1964) 910–914.
References
[1] D. Rajalakshmi, S. Narasimban, D.L. Madhavi, S.S. Deshpande, D.K. Salunkhe,
Food Antioxidants: Sources and Methods of Evaluation, Food Antioxidants,
Marcel Dekker, New York, 1996. pp. 65–157.
[2] M.A. Bianco, H. Savolainen, J. Sci. Total. Environ. 203 (1997) 79–82.
[3] J.M. Gil, M.C.R. Snchez, F.J.M. Gil, M.J. Yacamn, J. Chem. Educ. 83 (2006) 1476–
1478.
[4] G.M. Elvira, S. Chandra, R. M.M. Vinicio, W. Wenyi, Food Chem. Toxicol. 44
(2006) 191–1203.