396
K. Ikeda et al.
LETTER
Synth. Catal. 2005, 347, 1750. (h) Kwong, F. Y.; Li, Y. M.;
Lam, W. H.; Qiu, L.; Lee, H. W.; Yeung, C. H.; Chan, K. S.;
Chan, A. S. C. Chem. Eur. J. 2005, 11, 3872. (i) Shibata,
T.; Toshida, N.; Yamasaki, M.; Maekawa, S.; Takagi, K.
Tetrahedron 2005, 61, 9974. (j) Kwong, F. Y.; Lee, H. W.;
Lam, W. H.; Qiu, L.; Chan, A. S. C. Tetrahedron:
Asymmetry 2006, 17, 1238.
(3) Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. Chem. Commun.
2007, 2633.
(4) Park, J. H.; Cho, Y.; Chung, Y. K. Angew. Chem. Int. Ed.
2010, 49, 5138.
(5) Ikeda, K.; Morimoto, T.; Kakiuchi, K. J. Org. Chem. 2010,
75, 6279.
(6) For reviews on the synthetic transformation of glycerol, see:
(a) Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina,
C. D. Angew. Chem. Int. Ed. 2007, 46, 4434. (b) Zheng, Y.;
Chen, X.; Shen, Y. Chem. Rev. 2008, 108, 5253. (c) Zhou,
C.-H.; Beltramini, J. N.; Fan, Y.-X.; Lu, G. Q. Chem. Soc.
Rev. 2008, 37, 527. (d) Jérôme, F.; Pouilloux, Y.; Barrault,
J. ChemSusChem 2008, 1, 586.
(7) For a review on the synthetic transformation of D-mannitol,
see: de Olivaira, P. S. M.; Ferreira, V. F.; de Souza, M. V. N.
Quim. Nova 2009, 32, 441.
Figure 1 Profile of asymmetric reaction of 2a with (R)-1
(8) (a) Newman, M. S.; Renoll, M. J. Am. Chem. Soc. 1945, 67,
1621. (b) Hong, J. H.; Oh, C. H.; Cho, J. H. Tetrahedron
2003, 59, 6103.
(9) (a) Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Philips,
J. L.; Prather, D. E.; Schantz, R. D.; Sear, N. L.; Vianco, C.
S. J. Org. Chem. 1991, 56, 4056. (b) Schmid, C. R.; Bryant,
J. D. Org. Synth., Coll. Vol. IX 1998, 450.
(10) Under identical reaction conditions, the use of glycerol itself
as a carbonyl source gave 3a only in 11% yield, along with
13% of the hydrogen adduct of 2a and 30% of a mixture of
dimers of 2a.
(11) Typical Procedure for the Rhodium-Catalyzed
Cyclocarbonylation Reaction of Enyne 2a with
Glyceraldehyde Acetonide (R)-1 (Conditions A)
To a suspension of [RhCl(cod)]2 (6.16 mg, 0.0125 mmol),
dppp (10.63 mg, 0.025 mmol), and (R)-1 (131.0 mg, 1.0
mmol) in anhyd toluene (1 mL) was added enyne 2a (86.1
mg, 0.5 mmol) under N2. After degassing the mixture
through three freeze–pump–thaw cycles, the solution was
stirred at reflux for an appropriate time. The reaction mixture
was evaporated under reduced pressure. The residue was
purified by column chromatography on silica gel with
hexane–EtOAc (v/v = 2:1) as the eluent.
derived aldehydes used in this study are readily prepared
in two steps from glycerol and D-mannitol, respectively.
Various enynes can be carbonylated using these deriva-
tives. The present study provides a demonstration show-
ing that such carbonyl sources can be conveniently used in
the cyclocarbonylation of enynes.
Supporting Information for this article is available online at
Acknowledgment
This work was financially supported, in part, by a Grant-in-Aid for
Scientific Research on Innovative Area ‘Molecular Activation
Directed toward Straightforward Synthesis’ from MEXT. T.M. ac-
knowledges the grant for Mitsui Chemicals Inc. Award in Synthetic
Organic Chemistry to the Society of Synthetic Organic Chemistry,
Japan. We also thank Ms. Mika Yamamura and Ms. Yuriko
Nishiyama for assistance in obtaining HRMS.
Compound 3a
Yield: 87%; colorless oil; Rf = 0.31 (hexane–EtOAc, 2:1).
1H NMR (500 MHz, CDCl3): d = 2.31 (dd, J = 17.5, 2.4 Hz,
1 H), 2.82 (dd, J = 17.5, 6.4 Hz, 1 H), 3.27–3.32 (m, 1 H),
3.19–3.23 (m, 1 H), 4.35 (t, J = 7.6 Hz, 1 H), 4.56 (d,
J = 16.2 Hz, 1 H), 4.91 (d, J = 16.2 Hz, 1 H), 7.33–7.38 (m,
3 H), 7.49 (d, J = 6.7 Hz, 2 H). 13C NMR (125 MHz, CDCl3):
d = 40.3, 43.2, 66.2, 71.3, 128.0, 128.5, 128.6, 130.5, 134.6,
177.4, 206.8.2a
References and Notes
(1) For recent reviews of the Pauson–Khand reaction, see:
(a) Gibson, S. E.; Stevenazzi, A. Angew. Chem. Int. Ed.
2003, 42, 1800. (b) Shibata, T. Adv. Synth. Catal. 2006, 348,
2328. (c) Lee, H. W.; Kwong, F. Y. Eur. J. Org. Chem.
2010, 789.
(2) (a) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. J. Am.
Chem. Soc. 2002, 124, 3806. (b) Shibata, T.; Toshida, N.;
Takagi, K. Org. Lett. 2002, 4, 1619. (c) Shibata, T.;
Toshida, N.; Takagi, K. J. Org. Chem. 2002, 67, 7446.
(d) Fuji, K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K.
Angew. Chem. Int. Ed. 2003, 42, 2409. (e) Jeong, N.; Kim,
D. H.; Choi, J. H. Chem. Commun. 2004, 40, 1134. (f) Fuji,
K.; Morimoto, T.; Tsutsumi, K.; Kakiuchi, K. Tetrahedron
Lett. 2004, 45, 9163. (g) Kwong, F. Y.; Lee, H. W.; Qiu, L.;
Lam, W. H.; Li, Y. M.; Kwong, H. L.; Chan, A. S. C. Adv.
(12) (a) Yin, H.; Franck, R. W.; Chen, S. L.; Quigley, G. J.;
Todarot, L. J. Org. Chem. 1995, 57, 644.
(b) Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem.
1995, 60, 585.
(13) Using a combination of [IrCl(cod)]2 and (S)-tolBINAP, the
reaction of 2a with (R)-1 in 1,4-dioxane at 120 °C resulted in
the more enantioselective formation of (S)-3a (89% ee),
although the chemical yield was much lower (31%).
Synlett 2012, 23, 393–396
© Thieme Stuttgart · New York