smoothly to provide the corresponding azepinones 3e–3h in
65, 75, 75 and 72% yields respectively. Benzazepinones 3d–3h
(entries 3–7) were fully characterized after oxidation to
benzazepinediones 14–18 respectively. It appears that the
substituents in the benzene ring of azidoacrylates have little
effects on the outcome of the reaction. We were interested in
the reactivity of 3-heteroarylazidoacrylate 1i (entry 8) to
discern whether ortho lithiation or nucleophilic substitution
interferes the annulation. The annulation of 1i gave regio-
selectively benzazepinone 3i with intact pyridine nucleus. The
hydroxy product 3i was fully characterized after oxidation to
benzazepinedione 19. For the annulations of entries 3–8, the
temperature of the reactions was maintained at À78 1C for
1.5 h after adding the azido acrylates to avoid their hydrolysis
and the yields significantly increased. The annulation is also
compatible with the azido cyclic ketone 1j (entry 9). The
reaction of phthalide 2a with 1j resulted in the formation of
tricyclicazepinone 3j, which may serve as the precursor for
dibenzoazepinones.
Chem., 1989, 32, 1913; (c) C. J. Jr. Ohnmacht and F. M. McLaren,
J. Heterocycl. Chem., 1991, 28, 1219.
4 J. P. de Andrade, S. Berkov, F. Viladomat, C. Codina, J. A. S.
Zuanazzi and J. Bastida, Molecules, 2011, 16, 7097.
5 P. Evans, A. T. L. Lee and E. J. Thomas, Org. Biomol. Chem.,
2008, 6, 2158.
6 D. Dumoulin, S. Lebrun, E. Deniau, A. Couture and
P. Grandclaudon, Eur. J. Org. Chem., 2009, 3741.
7 (a) L. Li, Z. Li and Q. Wang, Helv. Chim. Acta, 2009, 92, 2754;
(b) F. I. Zubkov, E. V. Boltukhina, K. F. Turchin and
A. V. Varlamov, Tetrahedron, 2004, 60, 8455; (c) K. Satake,
K. Itoh, Y. Miyoshi, M. Kimura and M. Morosawa, J. Chem.
Soc., Perkin Trans. 1, 1986, 729; (d) Y. Ishihara, T. Tanaka,
S. Miwatashi, A. Fujishima and G. Goto, J. Chem. Soc., Perkin
Trans. 1, 1994, 2993.
8 (a) D. Dumoulin, S. Lebrun, A. Couture, E. Deniau and
P. Grandclaudon, Tetrahedron: Asymmetry, 2009, 20, 1903;
(b) D. Enders, A. Lenzen, M. Backes, C. Janeck, K. Catlin,
M.-I. Lannou, J. Runsink and G. Raabe, J. Org. Chem., 2005,
70, 10538; (c) A. Garcia, S. Paz and D. Dominguez, Tetrahedron
Lett., 2001, 42, 665.
9 D. Basavaiah and T. Satyanarayana, Chem. Commun., 2004, 32.
10 H. Ishibashi, S. Harada, M. Okada, M. Somekawa, M. Kido and
M. Ikeda, Chem. Pharm. Bull., 1989, 37, 939.
11 (a) A. Kamimura, M. So, T. Kuratani, K. Matsuura and M. Inui,
Bioorg. Med. Chem. Lett., 2009, 19, 3193; (b) A. Kamimura and
Y. Taguchi, Tetrahedron Lett., 2004, 45, 2335; (c) A. Kamimura,
Y. Taguchi, Y. Omata and M. Hagihara, J. Org. Chem., 2003,
68, 4996.
12 (a) T. O. Vieira and H. Alper, Org. Lett., 2008, 10, 485;
(b) B. Bradshaw, P. Evans, J. Fletcher, A. T. L. Lee,
P. G. Mwashimba, D. Oehlrich, E. J. Thomas, R. H. Davies,
B. C. P. Allen, K. J. Broadley, A. Hamrounic and C. Escargueilc,
Org. Biomol. Chem., 2008, 6, 2138.
Next we examined the reactivity of methoxy substituted
phthalides with azidoacrylate 1a (Table 3) in view of the
occurrence of methoxy substitutions in natural aromatic poly-
ketides. We were also interested in ruling out the possibility of
nuclear lithiation of methoxyphthalides (2b and 2c) (entries 1
and 2) under the annulation conditions. The reaction of these
phthalides with 1a afforded azepinones 3k and 3l respectively.
The azepinone 3k was fully characterized as its oxidized
derivative 20. The study was further extended to the reaction
of phthalide 2d with 1a (entry 3). This annulation led to the
formation of azepinone 3m. It was oxidized to benzazepinedione
21 and then fully characterized. Since heteronuclear systems are
susceptible towards nucleophilic addition, we inquisitively treated
azaphthalide 2e with azidoacrylate 1a (entry 4). Interestingly,
the reaction led to the formation of benzazepinones 3n which
were subjected to oxidation and then characterized. This
method can be useful for the synthesis of pyridinoazepinones
as antagonists of the nociceptin receptor, which is implicated
in a plethora of diseases.22
13 (a) C. J. Moody and G. J. Warrellow, J. Chem. Soc., Perkin Trans.
1, 1990, 2929; (b) C. J. Moody and G. J. Warrellow, J. Chem. Soc.,
Perkin Trans. 1, 1986, 1123; (c) I. Lantos, D. Bhattacharjee and
D. S. Eggleston, J. Org. Chem., 1986, 51, 4147.
14 (a) J. V. Prasad, M. Prabhakar, K. Manjulatha, D. Rambabu,
K. A. Solomon, G. G. Krishna and K. A. Kumar, Tetrahedron
Lett., 2010, 51, 3109; (b) M. Sajitz, R. Froehlich and
E.-U. Wuerthwein, Eur. J. Org. Chem., 2009, 2342; (c) A. Arany,
P. Groundwater and M. Nyerges, Tetrahedron Lett., 1998,
39, 3267; (d) K. E. Cullen and J. T. Sharp, J. Chem. Soc., Perkin
Trans. 1, 1995, 2565; (e) H. Finch, D. H. Reece and J. T. Sharp,
J. Chem. Soc., Perkin Trans. 1, 1994, 1193; (f) P. W. Groundwater,
A. J. Morton and R. Salter, Chem. Commun., 1993, 1789.
15 (a) L. F. Tietze and H. Schirok, J. Am. Chem. Soc., 1999,
121, 10264; (b) L. F. Tietze, K. Thede, R. Schimpf and
F. Sannicolo, Chem. Commun., 2000, 583; (c) P. Ribiere,
V. Declerck, Y. Nedellec, N. Yadav-Bhatnagar, J. Martinez and
F. Lamaty, Tetrahedron, 2006, 62, 10456.
In conclusion, the studies above have led to the development
of a modular and regiospecific method for the synthesis of
2-benzazepinones. It relies upon a previously unreported reaction
of vinyl azides. Full scope of the reaction is under further study.
Financial assistance of CSIR and UGC, New Delhi, is
greatly appreciated. We thank Professor G. Mani for solving
the X-ray structures.
16 (a) D. Mal and P. Pahari, Chem. Rev., 2007, 107, 1892; (b) D. Mal,
A. K. Jana, P. Mitra and K. Ghosh, J. Org. Chem., 2011, 76, 3392.
17 (a) K. Banert, in Organic Azides: Syntheses and Applications, ed.
¨
S. Brase and K. Banert, Willey, Chichester, 2010, pp. 115–166;
(b) S. Chiba, Synlett, 2012, 21; (c) H. Dong, M. Shen,
J. E. Redford, B. J. Stokes, A. L. Pumphrey and T. G. Driver,
Org. Lett., 2007, 9, 5191.
Notes and references
18 (a) S. K. Ghosh, R. Verma, U. Ghosh and V. R. Mamdapur, Bull.
Chem. Soc. Jpn., 1996, 69, 1705; (b) T. M. V. D. Pinho e Melo,
A. L. Cardoso, C. S. B. Gomes and A. M. A. Rocha Gonsalves,
Tetrahedron Lett., 2003, 44, 6313.
19 For a review on MnO2: A. T. Soldatenkov1, K. B. Polyanskii1,
N. M. Kolyadina1 and S. A. Soldatova1, Chem. Heterocycl.
Compd., 2009, 45, 633.
20 P. A. Manis and M. W. Rathke, J. Org. Chem., 1980, 45, 4952.
21 A. G. Griesbeck and H. Mauder, Angew. Chem., Int. Ed., 1992,
31, 73.
22 H. Takahashi, Y. Sugimoto, T. Yoshizumi, T. Kato, M. Asai and
H. Miyazoe, PCT Int. Appl., WO 2005085228 A1 20050915, 2005.
1 B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo,
R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber,
P. S. Anderson, R. S. L. Chang, V. J. Lotti, D. J. Cerino,
T. B. Chen, P. J. Kling, K. A. Kunkel, J. P. Springer and
J. Hirshfieldt, J. Med. Chem., 1988, 31, 2235.
2 J. M. Boente, L. Castedo, R. Cuadros, J. M. Saa
A. Perales, M. Martınez-Ripoll and J. Fayos, Tetrahedron Lett.,
1983, 24, 2029.
´
, R. Suau,
´
3 (a) S. Chumpradit, H. F. Kung, J. Billings, M. P. Kung and S. Pan,
J. Med. Chem., 1989, 32, 1431; (b) J. G. Berger, W. K. Chang,
J. W. Clader, D. Hou, R. E. Chipkin and A. T. McPhail, J. Med.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3999–4001 4001