20 C. O. Osuji, C. Y. Chao, C. K. Ober and E. L. Thomas,
Macromolecules, 2006, 39, 3114–3117.
21 K. Goossens, P. Nockemann, K. Driesen, K. Driesen, B. Goderis,
an interdigitation of the rod-like aromatic cores leading to the
reduction of d to a value smaller than 2L; however, in the SmA2
phases reported here, the aromatic parts adopt a non-interdigitated
antiparallel end-to-end organization as typical for SmA2 phases; the
reduction of the d-value is in this case due to the interdigitation of
the alkyl chains, which retains the end-to-end packing of the rod-
like cores and therefore, we assign these phases as SmA2.
38 The shown model is simplified, in reality the alkyl chains are in
a molten disordered state and also the aromatic cores are more
disordered, a slight interdigigitation of the imidazole units is also
possible.
€
C. Gorller-Walrand, K. V. Hecke, L. V. Meervelt, E. Pouzet,
K. Binnemans and T. Cardinaels, Chem. Mater., 2008, 20, 157–168.
22 (a) Q. X. Zhang, L. S. Jiao, C. S. Shan, P. Hou, B. Chen, X. Y. Xu and
L. Niu, Liq. Cryst., 2008, 35, 765–772; (b) Q. X. Zhang, C. S. Shan,
X. D. Wang, L. L. Chen, L. Niu and B. Chen, Liq. Cryst., 2008, 35,
1299–1305.
23 H. Yoshizawa, T. Miharaand N. Koide, Liq. Cryst., 2005, 32, 143–149.
24 J. Fouchet, L. Douce, B. Heinrich, R. Welter and A. Louati, Beilstein
J. Org. Chem., 2009, 5, No. 51.
€
39 (a) K. Borisch, S. Diele, P. Goring and C. Tschierske, Chem.
€
Commun., 1996, 237–238; (b) K. Borisch, S. Diele, P. Goring,
25 P. H. J. Kouwer and T. M. Swager, J. Am. Chem. Soc., 2007, 129,
14042–14052.
€
H. Muller and C. Tschierske, Liq. Cryst., 1997, 22, 427–443; (c)
K. Borisch, S. Diele, P. Goring, H. Kresse and C. Tschierske,
€
26 (a) J. M. Suisse, S. Bellemin-Laponnaz, L. Douce, A. Maisse-Francois
and R. Welter, Tetrahedron Lett., 2005, 46, 4303–4305; (b)
J. M. Suisse, L. Douce, S. Bellemin-Laponnaz, A. Maisse-Franc¸ois,
R. Welter, Y. Miyake and Y. Shimizu, Eur. J. Inorg. Chem., 2007,
3899–3905.
Angew. Chem., Int. Ed. Engl., 1997, 36, 2087–2089; (d) K. Borisch,
€
S. Diele, P. Goring, H. Kresse and C. Tschierske, J. Mater. Chem.,
1998, 8, 529–543; (e) X. H. Cheng, K. Das, S. Diele and
C. Tschierske, Langmuir, 2002, 18, 6521–6529.
€
27 B. El Hamaoui, L. J. Zhi, W. Pisula, U. Kolb, J. Wu and K. Mullen,
Chem. Commun., 2007, 2384–2386.
40 (a) T. Noguchia, K. Kishikawab and S. Kohmotob, Liq. Cryst., 2008,
35, 1043–1050; (b) X. L. Zhou, T. Narayanan and Q. Li, Liq. Cryst.,
2007, 34, 1243–1248; (c) B.-K. Cho, A. Jain, S. M. Gruner and
U. Wiesner, Science, 2004, 305, 1598–1601; (d) T. Kato,
T. Matsuoka, M. Nishii, Y. Kamikawa, K. Kanie, T. Nishimura,
E. Yashima and S. Ujiie, Angew. Chem., Int. Ed., 2004, 43, 1969–
1972; (e) A. Kohlmeier, D. Janietz and S. Diele, Chem. Mater.,
2006, 18, 1483–1489; (f) M. Lehmann and M. Jahr, Chem. Mater.,
2008, 20, 5453–5456; (g) S. Coco, C. Cordovilla, B. Donnio,
P. Espinet, M. J. Garcia-Casas and D. Guillon, Chem.–Eur. J.,
2008, 14, 3544–3552.
28 (a) J. Motoyanagi, T. Fukushima and T. Aida, Chem.Commun., 2004,
1, 101–103; (b) M. A. Alam, J. Motoyanagi, Y. Yamamoto,
T. Fukushima, J. Kim, K. Kato, M. Takata, A. Saeki, S. Seki,
S. Tagawa and T. Aida, J. Am. Chem. Soc., 2009, 131, 17722–17723.
29 (a) S. Kumar and K. S. Pal, Tetrahedron Lett., 2005, 46, 2607–2610;
(b) K. S. Pal and S. Kumar, Tetrahedron Lett., 2006, 47, 8993–8997.
30 (a) C. J. Bowlas, D. W. Bruce and K. R. Seddon, Chem. Commun.,
1996, 1625–1626; (b) C. M. Gordon, J. D. Holbrey, A. R. Kennedy
and K. R. Seddon, J. Mater. Chem., 1998, 8, 2627–2636; (c)
J. D. Holbrey and K. R. Seddon, J. Chem. Soc., Dalton Trans.,
1999, 2133–2139; (d) G. A. Knight and B. D. Shaw, J. Chem. Soc.,
41 X. H. Cheng, S. Diele and C. Tschierske, Angew. Chem., Int. Ed.,
2000, 39, 592–595.
€
1938, 682–683; (e) E. J. R. Sudholter, J. B. F. N. Engberts and
42 B. M. Rosen, C. J. Wilson, D. A. Wilson, M. Peterca, M. R. Imam
and V. Percec, Chem. Rev., 2009, 109, 6275–6540.
W. H. De Jeu, J. Phys. Chem., 1982, 86, 1908–1913.
31 X. J. Li, D. W. Bruce and J. M. Shreeve, J. Mater. Chem., 2009, 19,
8232–8238.
43 (a) S. D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, G. Johansson,
G. Ungar and V. S. K. Balagurusamy, Science, 1997, 278, 449–452;
(b) V. Percec, W.-D. Cho, P. E. Mosier, G. Ungar and
D. J. P. Yeardley, J. Am. Chem. Soc., 1998, 120, 11061–11070; (c)
V. Percec, M. N. Holerca, S. Uchida, W.-D. Cho, G. Ungar,
Y.-S. Lee and D. J. P. Yeardley, Chem.–Eur. J., 2002, 8, 1106–1117;
(d) D. J. P. Yeardley, G. Ungar, V. Percec, M. N. Holerca and
G. Johansson, J. Am. Chem. Soc., 2000, 122, 1684–1689.
44 H. J. Deutecher, R. Frach, C. Tschierske, H. Zaschke, in Selected
Topics in Liquid Crystal Research, Ed. H.-D. Koswig, Akademie
Verlag Berlin, 1990, pp.1–18.
45 (a) S. T. Hyde, in Handbook of Applied Surface and Colloid Chemistry,
Ed. K. Holmberg, Wiley, 2001, pp 299–232; (b) S. Diele, Curr. Opin.
Colloid Interface Sci., 2002, 7, 333–342; (c) M. Imperor-Clerc, Curr.
Opin. Colloid Interface Sci., 2005, 9, 370–376.
46 G. Ungar and X. Zeng, Soft Matter, 2005, 1, 95–106.
47 (a) K. Fontell, K. K. Fox and E. Hansson, Mol. Cryst. Liq. Cryst.
Lett. Sect., 1985, 1, 9–17; (b) K. Fontell, Colloid Polym. Sci., 1990,
268, 264–285; (c) P. Ziherl and R. D. Kamien, J. Phys. Chem. B,
2001, 105, 10147–10158; (d) G. M. Grason, B. A. DiDonna and
R. D. Kamien, Phys. Rev. Lett., 2003, 91, 058304; (e) J. Charvolin
and J. F. Sadoc, J. Phys., 1988, 49, 521–526; (f) R. Vargas,
P. Mariani, A. Gulik and V. Luzzati, J. Mol. Biol., 1992, 225, 137–
145.
32 (a) W. Dobbs, L. Douce and B. Heinrich, Beilstein J. Org. Chem.,
2009, 5, No. 62; (b) J.-H. Olivier, F. Camerel, F. Ulrich, J. Barber
and R. Ziessel, Chem. Eur. J., 2010, 16, 7134–7142; (c) S. Yazaki,
M. Funahashi, J. Kagimoto, H. Ohno and T. Kato, J. Am. Chem.
Soc., 2010, 132, 7702–7708; (d) J. E. Baraa, E. S. Hatakeyamaa,
B. R. Wiesenauerb, X. H. Zeng, R. D. Noblea and D. L. Gina, Liq.
Cryst., 2010, 37(12), 1587–1599; (e) F. Xu, K. Matsumoto and
R. Hagiwara, Chem.–Eur. J., 2010, 16, 12970–12976; (f)
J. C. Y. Lin, C.-J. Huang, Y.-T. Lee, K.-M. Lee and I. J. B. Lin,
J. Mater. Chem., 2011, 21, 8110–8127; (g) K. Goossens, S. Wellens,
K. V. Hecke, L. V. Meervelt, T. Cardinaels and K. Binnemans,
Chem.–Eur. J., 2011, 17, 4291–4306.
33 X. H. Cheng, X. Q. Bai, S. Jing, H. Ebert, M. Prehm and
C. Tschierske, Chem.–Eur. J., 2010, 16, 4588–4601.
34 (a) P. E. Fanta, Chem. Rev., 1964, 64, 613–632; (b) T. Yamamoto and
Y. Kurata, Can. J. Chem., 1983, 61, 86–86; (c) J. Lindley, Tetrahedron
Lett., 1984, 40, 1433–1456.
35 I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim,
2003.
36 The molecular length L was determined in the most extended
conformation with all- trans-conformation of the alkyl chains using
space-filling models (also known CPK models by Corey, Pauling
and Koltun), seeR. B. Corey and L. Pauling, Rev. Sci. Instrum.,
1953, 24, 621–627.
37 This type of interdigitated bilayer structure is assigned as SmA2
though the d-parameter is significantly smaller than d ¼ 2L and
corresponds to L < d < 2L, which is usually assigned to double
layer smectic phases abbreviated as SmAd; in SmAd phases there is
48 No bicontinuous cubic phase with Pm3n lattice is known,45 therefore
a bicontinuous structure, as expected if the phase sequence is
considered, is unlikely. Also the lattice parameter of this cubic
phase is in the same range as observed for E316/3 (see Table 7); the
slight increase of acub by 0.4 mn with respect to E316/3 is in line with
the increase of m from 3 to 4.
This journal is ª The Royal Society of Chemistry 2012
Soft Matter, 2012, 8, 2274–2285 | 2285