LETTER
Total Synthesis of ( )-3-Hydroxy-b-ionone
579
3-hydroxy-b-ionone (1)18,19 in 83% yield for the two
steps. All spectral data of the synthetic material were iden-
tical to those published (Scheme 3).7g
(3) Kato-Noguchi, H.; Yamamoto, M.; Tamura, K.; Teruya, T.;
Suenaga, K.; Fujii, Y. Plant Growth Regul. 2010, 60, 127.
(4) For a review, see: (a) Kamei, T.; Morimoto, S.; Shishido, K.
J. Synth. Org. Chem. Jpn. 2006, 64, 1021. For recent
synthetic studies, see: (b) Kanematsu, M.; Soga, K.;
Manabe, Y.; Morimoto, S.; Yoshida, M.; Shishido, K.
Tetrahedron 2011, 67, 4758. (c) Yokoe, H.; Mitsuhashi, C.;
Matsuoka, Y.; Yoshimura, T.; Yoshida, M.; Shishido, K.
J. Am. Chem. Soc. 2011, 133, 8854.
OH
O
H2, Raney Ni (W2), (MeO)3B
MeOH–CH2Cl2–H2O (10:5:1)
r.t., 4 h
14
74%
TBSO
16
(5) Kikuchi, D.; Yoshida, M.; Shishido, K. Tetrahedron Lett.
2012, 53, 145.
(6) For reviews, see: (a) Connon, S. J.; Blechert, S. Angew.
Chem. Int. Ed. 2003, 42, 1900. (b) Poulson, C. S.; Madsen,
R. Synthesis 2003, 1. (c) Diber, S. T.; Giessert, A. Chem.
Rev. 2004, 104, 1317. (d) Mori, M. J. Synth. Org. Chem.
Jpn. 2005, 63, 5.
(7) For the syntheses of racemic 1, see: (a) Loeber, D. E.;
Russell, S. W.; Toube, T. P.; Weedon, C. L. J. Chem. Soc. C
1971, 404. (b) Takazawa, O.; Tamura, H.; Kogami, K.;
Hayashi, K. Bull. Chem. Soc. Jpn. 1982, 55, 1907 . For the
syntheses of optically active 1, see: (c) Mori, K.
Tetrahedron Lett. 1973, 28, 2635. (d) Mayer, H. Helv.
Chim. Acta 1980, 63, 154. (e) Parry, A. D.; Neill, S. J.;
Horgan, R. Phytochemistry 1990, 29, 1033. (f) Ito, M.
J. Chem. Soc., Perkin Trans. 1 1998, 2565. (g) Khachik, F.;
Chang, A. N. J. Org. Chem. 2009, 74, 3875. (h) Khachik,
F.; Chang, A. N. Synthesis 2011, 509.
O
Ac2O, pyridine, 4-DMAP
CH2Cl2, r.t., 5 h
then DBU, r.t., 11 h
95%
RO
3 N HCl (aq)
THF, r.t., 3 h
87%
17: R = TBS
1: R = H
Scheme 3 Conversion of 14 into 1
In summary, we have completed the total synthesis of ( )-
3-hydroxy-b-ionone (1) employing a ring-closing enyne
metathesis for the construction of the C1–C8 segment and
a two-carbon elongation via the nitrile oxide–alkene [3+2]
cycloaddition as the key steps in a longest linear sequence
of eight steps from 3,3-dimethylpent-4-ynal with an over-
all yield of 13%. In addition, it should be emphasized that
the enyne metathesis of the substrate with sterically de-
manding alkene and alkyne functional groups was effec-
tive in producing the substituted vinylcyclohexenol in
moderate yield. The synthetic route developed here is
general and flexible and could be applied not only to the
syntheses of other related ionone-type natural products
but also for assembling a library of compounds for biolog-
ical evaluations.
(8) McMurry, J. E.; Mats, J. R.; Kees, K. L. Tetrahedron 1987,
43, 5489.
(9) For the syntheses of five-membered hetero- and carbocyclic
dienes from the precursors with a 1,1-disubstituted alkene
and an acetylene with a quaternary carbon center at the
propargylic position, see: (a) Kitamura, T.; Sato, Y.; Mori,
M. Chem. Commun. 2001, 1258. (b) Kitamura, T.; Sato, Y.;
Mori, M. Adv. Synth. Catal. 2002, 344, 678. (c) Fürstner,
A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C.
W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001,
7, 3236.
(10) Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998,
63, 6082.
(11) Analytical Data
IR (neat): 3334, 2922, 1460, 1362, 1049, 918 cm–1. 1H NMR
(400 MHz, CDCl3): d = 6.16 (ddd, J = 13.2, 7.2, 1.6 Hz, 1
H), 5.26 (dd, J = 7.2, 2.4 Hz, 1 H), 4.98 (dd, J = 13.2, 2.4 Hz,
1 H), 4.05–3.92 (m, 1 H), 2.35 (dd, J = 16.8, 5.6 Hz, 1 H),
2.01 (dd, J = 16.8, 6.8 Hz, 1 H), 1.75 (ddd, J = 12.0, 3.2, 2.0
Hz, 1 H), 1.71 (s, 3 H), 1.45 (t, J = 12.0 Hz, 1 H), 1.35 (br s,
1 H), 1.05 (s, 3 H), 1.04 (s, 3 H). 13C NMR (100 MHz,
CDCl3): d = 138.1 (Cq), 134.7 (CH), 125.6 (Cq), 118.7
(CH2), 65.1 (CH), 48.3 (CH2), 42.2 (CH2), 36.6 (Cq), 30.0
(CH3), 28.3 (CH3), 21.2 (CH3). ESI-HRMS: m/z calcd for
C11H18ONa [M + Na]+: 189.1255; found: 189.1255.
(12) Analytical Data
Acknowledgment
This work was supported financially by a Grant-in-Aid for the Pro-
gram for Promotion of Basic and Applied Research for Innovation
in the Bio-oriented Industry (BRAIN).
References and Notes
(1) (a) Fujimori, T.; Kasuga, R.; Noguchi, M.; Kaneko, H.
Agric. Biol. Chem. 1974, 38, 891. (b) Shibata, S.;
Katsuyama, A.; Noguchi, M. Agric. Biol. Chem. 1978, 42,
195.
IR (neat): 3345, 2965, 2925, 1041, 892 cm–1. 1H NMR (400
MHz, CDCl3): d = 5.99 (s, 1 H), 4.98 (s, 1 H), 4.79 (s, 1 H),
3.99–3.92 (m, 1 H), 2.37 (dd, J = 16.4, 3.2 Hz, 1 H), 2.30
(dd, J = 16.4, 9.6 Hz, 1 H), 1.84 (ddd, J = 13.2, 3.6, 1.6 Hz,
1 H), 1.81 (s, 3 H), 1.70 (dd, J = 13.2, 9.6 Hz, 1 H), 1.45 (br
s, 1 H), 1.15 (s, 3 H), 1.14 (s, 3 H). 13C NMR (100 MHz,
CDCl3): d = 153.5 (Cq), 133.1 (Cq), 127.9 (CH), 111.7
(CH2), 67.7 (CH), 52.0 (CH2), 43.9 (CH2), 37.2 (Cq), 31.8
(CH3), 29.4 (CH3), 26.7 (CH3). ESI-HRMS: m/z calcd for
C11H18ONa [M + Na]+: 189.1255; found: 189.1258.
(13) The Wittig and Horner–Wadsworth–Emmons reactions of
13a,b were examined under various conditions; however,
only starting aldehyde was recovered.
(2) (a) Aasen, A. J.; Kimland, B.; Enzell, C. R. Acta Chem.
Scand. 1971, 25, 1481. (b) Kimland, B.; Aasen, A. J.;
Enzell, C. R. Acta Chem. Scand. 1972, 26, 2177. (c) Aasen,
A. J.; Kimland, B.; Enzell, C. R. Acta Chem. Scand. 1973,
27, 2107. (d) Fujimori, T.; Kasuga, R.; Matsushita, H.;
Kaneko, H.; Noguchi, M. Agric. Biol. Chem. 1976, 40, 303.
(e) Behr, D.; Wahlberg, I.; Nishida, T.; Enzell, C. R. Acta
Chem. Scand. 1978, 32, 391. (f) D’Abrosca, B.;
DellaGreca, M.; Fiorentino, A.; Monaco, P.; Oriano, P.;
Temussi, F. Phytochemistry 2004, 65, 497. (g) Park, J. H.;
Lee, D. G.; Yeon, S. W.; Kwon, H. S.; Ko, J. H.; Shin, D. J.;
Park, H. S.; Kim, Y. S.; Bang, M. H.; Baek, N. I. Arch.
Pharm. Res. 2011, 34, 533.
© Thieme Stuttgart · New York
Synlett 2012, 23, 577–580