A.E.-M. M. Ramadan / Journal of Molecular Structure 1015 (2012) 56–66
65
Inorg. Biochem. 103 (2009) 401;
prepared via series of metathetical reactions. A square planar
geometry was deduced for the four-coordinate complex species
[NiL](PF4)2 and[NiL](ClO4)2, while an octahedral environment with
slight distortion in nitrato and halogeno complexes was inferred on
the bases of electronic and magnetic moment data. The catalytic
activity for the SOD reaction of the title complexes has been dem-
onstrated by in vitro measurements. Taking into account the
reduction potentials of the couples OÅ2ꢀ/O2 and O2Åꢀ/H2O2 (ꢀ0.16 V
and 0.89 V, vs. NHE at pH 7, respectively) any redox pair with an
intermediate potential value between these limits can act as a cat-
alyst for the SOD reaction. The observed redox processes of the re-
ported nickel centers lie in the middle of this range. Therefore, the
electrochemical behavior observed for these complexes is in agree-
ment with their SOD mimetic activity. The absorption and fluores-
cence studies demonstrated a considerable interaction between
complexes [NiLCl2] and [NiL](PF4)2 with calf thymus DNA.
(d) Kaushik Chosh, Pramod Kumar, Nidhi Tyagi, Udai P. Singh, Nidhi Coel,
Ajanta Chakraborty, Partha Roy, Maria Camilla Baratto, Polyhedron 30 (2011)
2667;
(e) X.L. Wang, H. Chao, X.L. Hong, Y.J. Liu, L.N. Ji, Transition Met. Chem. 30
(2005) 305–311.
[21] (a) K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99 (1999) 2777;
(b) Y. Xiong, L.N. Ji, Coord. Chem. Rev 185–186 (1999) 711;
(c) L.-N. Ji, X.-H. Zou, J.-G. Liu, Coord. Chem. Rev. 216–217 (2001) 513;
(d) L.-N. Ji, Q.-L. Zhang, H. Chao, Chin. Sci. Bull. 46 (2001) 1332.
[22] (a) M.C.B. Oliveira, M.S.R. Couto, P.C. Severino, T. Foppa, G.T.S. Martins, B.
Szpoganicz, R.A. Peralta, A. Neves, H. Terenzi, Polyhedron 24 (2005) 495;
(b) M. Wu, D. Stoermer, T.D. Tullius, C.A. Townsend, J. Am. Chem. Soc. 122
(2000) 12884.
[23] H.A. Avila, D.S. Sigman, L.M. Cohen, R.C. Millikan, L. Simpson, Mol. Biochem.
Parasitol 48 (1991) 211.
[24] (a) V.G. Vaidyanathan, B.U. Nair, J. Inorg. Biochem. 94 (2003) 121;
(b) J. Wang, L. Shuai, X. Xiao, Y. Zeng, Z. Li, T.M. Lnoue, J. Inorg. Biochem. 99
(2005) 883;
(c) V. Una, M. Kanthimathi, T. Weyhermuller, B. Unni Nair, J. Inorg. Biochem. 99
(2005) 2299.
[25] (a) E.L. Hegg, J.N. Burstyn, Inorg. Chem. 35 (1996) 7474;
(b) E.L. Hegg, K.A. Deal, L.L. Kiessling, J.N. Burstyn, Inorg. Chem. 36 (1997)
1715;
Appendix A. Supplementary material
(c) Y.G. Fang, Zhang, S.Y. Chen, N. Jiang, H.H. Lin, Y. Zhang, X.-Q. Yu, Bioorg.
Med. Chem. 15 (2007) 696;
Supplementary data associated with this article can be found, in
(d) M.C.B. Oliveira, M.S.R. Couto, P.C. Severino, T. Poppa, G.T.S. Martins, B.
Szpoganicz, R.A. Peralta, A. Neves, H. Terenzi, Polyhedron 24 (2005) 495;
(e) K.G. Ragunathan, H.-J. Schneider, Angew. Chem., Int. Ed. 35 (1996) 1219.
[26] L.F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes, Cambridge
University Press, Cambridge, UK, 1989.
References
[27] (a) K. Ghosh, P. Kumar, N. Tyagi, U.P. Singh, V. Aggarwal, M.C. Baratto, Eur. J.
Med. Chem. 45 (2010) 3770;
(b) K. Ghosh, N. Tyagi, P. Kumar, Inorg. Chem. Commun. 13 (2010) 380.
[28] (a) J. Haufel, E. Beitmaier, Angew. Chem. 13 (1974) 604;
(b) M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Dorty, J. Am. Chem. Soc. 76
(1956) 3047.
[1] I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Inorganic Chemistry
Structure and Reactivity, University Science Books, USA, 2007.
[2] R.R. Crichton, Biological Inorganic Chemistry, first ed., Elsevier, Amsterdam, 2008.
[3] J. Sessler, S.R. Doctrow, T.J. McMurry, S.J. Lippard, Medicinal Inorganic
Chemistry, first ed., ACS symposium series, vol. 903, New York, 2005.
[4] (a) M.F. Beal, Curr. Opin. Neurobiol. 6 (1996) 661;
[29] W.J. Greay, Coord. Chem. Rev. 7 (1971) 81.
(b) A. Rotig, P. Ddelonlay, D. Chretien, F. Foury, M. Koenig, D. Sidi, A. Munnich,
P. Rustin, Nat. Genet. 17 (1997) 215;
(c) K.B. Beckman, B.N. Ames, Physiol. Rev. 78 (1998) 547;
(d) S.I. Choi, W.K. Ju, E.K. Choi, J. Kim, H.Z. Lea, R.I. Carp, H.M. Wisniewski, Y.S.
Kim, Acta Neuropathol. (Berl.) 96 (1998) 279;
[30] A.M. Ramadan, T.I. El-Emary, Transition Met. Chem. 23 (1998) 491.
[31] S. Brawner, K.B. Mertes, J. Inorg. Nucl. Chem. 41 (1979) 764.
[32] G.A. Nelson, D.H. Bush, J. Am. Chem. Soc. 86 (1964) 4834.
[33] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, Wiley, New York, 1986.
(e) A.H.V. Schapira, Biochim. Biophys. Acta 1366 (1998) 225;
(f) M.A. Smith, L.M. Sayre, V.E. Anderson, P.L. Harris, M.F. Beal, N. Kowall, G.J.
Perry, Histochem. Cytochem. 46 (1998) 731;
[34] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1970.
[35] R.L. Dutta, A. Syamal, Elements of Magnetochemistry, second ed., Affiliated
East-West Press, Delhi, 2007.
(g) C. Behl, Prog. Neurobiol. 57 (1999) 301;
(h) A.R. White, X. Huang, M.F. Jobling, C.J. Barrow, K. Beyreuther, C.L. Masters,
A.I. Bush, R. Cappai, J. Neurochem. 76 (2001) 1509;
[36] B.N. Figgis, J. Lewis, Prog. Inorg. Chem. 6 (1964) 37.
[37] R.M. El-Shazly, G.A. Al-Hazmi, S.E. Ghazy, M.S. El-Shahawi, A.A. El-Asmy,
Spectrochim. Acta A 61 (2005) 243.
(i) C. Jung, C.M. Higgins, Z. Xu, J. Neurochem. 83 (2002) 535.
[5] C. Muscoli, S. Cuzzocrea, D.P. Riley, J.L. Zweier, C. Thiemermann, Z. Wang, D.
Salvemini, Br. J. Pharmacol. 140 (2003) 445.
[6] D. Salvemini, D.P. Riley, S. Cuzzocrea, Nat. Rev. Drug Discovery 1 (2002) 367.
[7] J.M. Mates, Toxicology 153 (2000) 83.
[8] D.P. Riley, O.F. Schall, Adv. Inorg. Chem. 59 (2006) 233.
[9] K.H. Thompson, C. Orvig, Science 300 (2003) 936.
[10] (a) Z. Durackova, J. Labuda, J. Inorg. Biochem. 58 (1995) 297;
(b) E. Bienvenue, S. Choua, M.-A. Lobo-Recio, C. Marzin, P. Pacheco, P. Seta, G.
Tarrago, J. Inorg. Biochem. 57 (1995) 157;
[38] E.R. Brown, R.F. Large, in: A. Weissberg, B. Rossiter (Eds.), Techniques of
Chemistry: Physical Methods of Chemistry, Wiley, New York, 1971.
[39] K.D. Karlin, P.L. Dahlstrom, J.R. Hyde, J. Zubieta, J. Chem. Soc. Chem. Commun.
(1980) 906.
[40] J. Petlicki, T.G.M. van de Ven, J. Chem. Soc., Faraday Trans. 94 (1998) 2763.
[41] B.H.J. Beilski, H.W. Richter, J Am. Chem. Soc. 99 (1977) 3019.
[42] A.M. Ramadan, M.M. El-Naggar, J. Inorg. Biochem. 63 (1996) 143.
[43] A.L. Abuhijleh, J. Khalaf, Eur. J. Med. Chem. 45 (2010) 3811 (and references
therein).
[44] (a) C. Amar, E. Wilkas, J. Foos, J. Inorg. Biochem. 17 (1982) 313;
(b) L.L. Costanzo, D. Guidi, S. Giffrida, E. Rizzarelli, G. Vecchio, J. Inorg. Biochem.
50 (1993) 273.
(c) Z. Durackova, M.A. Mendiola, M.T. Sevilla, A. Valent, Bioelectrochem.
Bioenerg. 48 (1999) 109;
(d) A.S. Fernandes, J. Gaspar, M.F. Cabral, C. Caneiras, R. Guedes, Jose Rueff, M.
Castro, J. Costa, N.G. Oliveira, J. Inorg. Biochem. 101 (2007) 849;
(e) D. Li, S. Li, D. Yang, J. Yu, J. Huang, Y. Li, W. Tang, Inorg. Chem. 42 (19) (2003)
6071.
[45] R.P. Bonomo, E. Conte, R. Marcelli, A.M. Sontoro, G.J. Tabi, J. Inorg. Biochem. 53
(1994) 172.
[46] (a) S.J. Lipard, A.R. Burger, K. Ugurbil, J.S. Valentine, W. Pantaliano, in: K.N.
Raymond (Ed.), Bioinorganic Chemistry, American Chemical Society,
Washington, 1977;
(b) J.S. Richardson, D.C. Richardson, J.A. Trainer, E.D. Galtzoff, Nature 306
(1986) 284.
[47] (a) R.N. Patel, N. Singh, K.K. Shukla, V.L.N. Gundla, U.K. Chauhan, J. Inorg.
Biochem. 99 (2005) 651;
(b) R.N. Patel, N. Singh, K.K. Shukla, U.K. Chauhan, J.N. Gutierrez, A. Castineiras,
Inorg. Chem. Acta 357 (2004) 2469.
[48] J.P. Collman, T.R. Halbert, K.S. Suslick, in: T.G. Spiro (Ed.), Metal Ion in
Activation of Dioxygen, John Wiley, New York, 1980.
[49] V. Pelmenschikov, P.E.M. Siegbahn, J. Am. Chem. Soc. 128 (23) (2006)
7466.
[11] J. Wuerges, J.W. Lee, Y.I. Vim, H.S. Vim, S.O. Kang, K.D. Carugo, Proc. Natl. Acad.
Sci. USA 101 (2004) 8569.
[12] D.P. Barondeau, C.J. Kassmann, C.K. Bruns, J.A. Tainer, E.D. Getzoff,
Biochemistry 43 (2004) 8038.
[13] J.S.B. Choudhury, J.W. Lee, G. Davidson, Y.I. Vim, K. Bose, M.L. Sharma, S.D.
Kang, D.E. Cabelli, M.J. Maroney, Biochemistry 38 (1999) 3744.
[14] J. Shearer, L.M. Long, Inorg. Chem. 45 (2006) 2358.
[15] (a) R.N. Patel, N. Singh, V.L.N. Gundla, Polyhedron 26 (2007) 757;
(b) J.S. Pap, B. Kripli, H. Varadi, M. Giorgi, J. Kaizer, G. Speier, J. Inorg. Biochem.
105 (2011) 911;
(c) R.N. Patel, K.K. Shukla, A. Singh, M. Choudhary, D.K. Patel, J. Niclos-
Gutierrez, D. Choquesillo-Lazarte, Transition Met. Chem. 34 (2009) 239.
[16] N.H. William, B. Takasaki, M. Wall, J. Chin, J. Acc. Chem. Res. 32 (1999) 485.
[17] M. Oivanan, S. Kuusela, H. lonnberg, Chem. Rev. 98 (1998) 961.
[18] E.L. Hegg, K.A. Deal, L.L. Kiessling, J.N. Burstyn, Inorg. Chem. 36 (1997) 1715–
1718.
[50] (a) T.A. Khan, S. Naseem, S.N. Khanb, A.U. Khan‘‘, M. Shakir, Spectrochim. Acta
Part A 73 (2009) 622;
(b) S. Anbu, M. Kandaswamy, P. Suthakaran, V. Murugan, B. Varghese, J. Inorg.
Biochem. 103 (2009) 401;
(c) K. Chosh, P. Kumar, N. Tyagi, U.P. Singh, N. Coel, A. Chakraborty, P. Roy, M.C.
Baratto, Polyhedron 30 (2011) 2667;
[19] L.S. Lerman, J. Mol. Biol. 3 (1961) 18.
[20] (a) S. Anbu, M. Kandaswamy, Polyhedron 30 (2011) 123;
(b) Tahir Ali Khan, Sultana Naseem, Shahper N. Khanb, Asad U. Khan,
Mohammad Shakir, Spectrochim. Acta Part A 73 (2009) 622;
(c) S. Anbu, M. Kandaswamy, P. Suthakaran, V. Murugan, Babu Varghese, J.
(d) X.L. Wang, H. Chao, X.L. Hong, Y.J. Liu, L.N. Ji, Transition Met. Chem. 30
(2005) 305.
[51] A. Rompell, H. Fischer, D. Meiwes, K.B. Karentzopoulos, K. Diillinger, F. Tuczek,
H. Witzel, B. Krebs, J. Biol. Inorg. Chem. 4 (1999) 56.