Journal of the American Chemical Society
Communication
(3) For reviews, see: (a) Driver, T. G. Org. Biomol. Chem. 2010, 8,
3831. (b) Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.;
(18) For computational studies on the mechanism of metal nitrenoid
formation from azides, see: (a) References 10a and 16a. (b) Cundari,
T. R.; Dinescu, A.; Kazi, A. B. Inorg. Chem. 2008, 47, 10067.
(19) Kornecki, K. P.; Berry, J. F. Chem.Eur. J. 2011, 17, 5827.
(20) Cf.: (a) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131,
16525. (b) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. Am. Chem. Soc.
2009, 131, 13226.
Piangiolino, C. Coord. Chem. Rev. 2006, 250, 1234. (c) Brase, S.; Gil,
̈
C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44,
5188. (d) Katsuki, T. Chem. Lett. 2005, 34, 1304.
(4) Cf.: (a) Subbarayan, V.; Ruppel, J. V.; Zhu, S.; Perman, J. A.;
Zhang, X. P. Chem. Commun. 2009, 4266. (b) Gao, G.-Y.; Lu, H.;
Subbarayan, V.; Tao, J.; Zhang, X. P. Organometallics 2009, 29, 389.
(c) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.;
Zhang, X. P. Org. Lett. 2008, 10, 1995. (d) Jones, J. E.; Ruppel, J. V.;
Gao, G.-Y.; Moore, T. M.; Zhang, X. P. J. Org. Chem. 2008, 73, 7260.
(e) Kawabata, H.; Omura, K.; Uchida, T.; Katsuki, T. Chem.Asian J.
2007, 2, 248. (f) Kawabata, H.; Omura, K.; Katsuki, T. Tetrahedron
Lett. 2006, 47, 1571.
(5) (a) Dong, H.; Latka, R. T.; Driver, T. G. Org. Lett. 2011, 13,
2726. (b) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009,
74, 6442. (c) Dong, H.; Shen, M.; Redford, J. E.; Stokes, B. J.;
Pumphrey, A. L.; Driver, T. G. Org. Lett. 2007, 9, 5191. (d) Shen, M.;
Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056.
(e) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G.
J. Am. Chem. Soc. 2007, 129, 7500.
(21) Murata, S.; Tsubone, Y.; Kawai, R.; Eguchi, D.; Tomioka, H. J.
Phys. Org. Chem. 2005, 18, 9.
(22) (a) Lin, X.; Zhao, C.; Che, C.-M.; Ke, Z.; Phillips, D. L. Chem.
Asian J. 2007, 2, 1101. (b) Nageli, I.; Baud, C.; Bernardinelli, G.;
̈
Jacquier, Y.; Moraon, M.; Muller, P. Helv. Chim. Acta 1997, 80, 1087.
̈
(23) The observed KIE is composed of both a primary and an
assumed small secondary isotope effect. We thank a reviewer for
pointing out that this secondary effect is not necessarily the same for
the two diastereomeric transition states that lead to 15-d2 and 16-d2.
(24) (a) Wiberg, K. B. J. Am. Chem. Soc. 1954, 76, 5371. (b) Cohen,
R.; Graves, C. R.; Nguyen, S. T.; Martin, J. M. L.; Ratner, M. A. J. Am.
Chem. Soc. 2004, 126, 14796.
(25) kH/kD = 5 was reported by Lebel and Huard for the Rh2(II)-
catalyzed C−H bond amination of cyclohexane using N-tosylox-
ycarbamate as the N-atom source.2e
(26) If C−H bond cleavage did occur via a hydride shift, formation of
carbocation 9 would be expected to trigger the migration of one of the
methyl groups. For alkyl group migrations in Rh2(II)-catalyzed
reactions of aryl azides, see: Sun, K.; Liu, S.; Bec, P. M.; Driver, T.
G. Angew. Chem., Int. Ed. 2011, 50, 1702.
(6) For descriptions of the competing reactions, see: (a) Caselli, A.;
Gallo, E.; Ragaini, F.; Ricatto, F.; Abbiati, G.; Cenini, S. Inorg. Chim.
Acta 2006, 359, 2924. (b) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.;
Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem.Eur. J.
2003, 9, 249. (c) Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol.
Catal. A 1999, 137, 135.
(27) At 100 and 80 °C, the KIE was determined to be 5.7 and 3.7.
The linear correlation of these data with temperature revealed the
isokinetic temperature to be 43 °C.
(7) Refer to the Supporting Information for a comprehensive
description of the reaction conditions examined.
(8) Photolysis or pyrolysis of aryl azides with ortho-alkyl substituents
affords a variety of products, including tar, anilines, azepines, indoles,
and indolines. For leading reports, see: (a) Murata, S.; Yoshidome, R.;
Satoh, Y.; Kato, N.; Tomioka, H. J. Org. Chem. 1995, 60, 1428.
(b) Smolinsky, G.; Feuer, B. I. J. Org. Chem. 1964, 29, 3097.
(9) For recent reports of iron-catalyzed aliphatic C−H bond
amination from azides, see: (a) King, E. R.; Hennessy, E. T.; Betley,
T. A. J. Am. Chem. Soc. 2011, 133, 4917. (b) King, E. R.; Betley, T. A.
Inorg. Chem. 2009, 48, 2361.
(28) For leading discussions on the isokinetic temperature, see:
(a) Carpenter, B. K. Determination of Organic Reaction Mechanisms;
Wiley: New York, 1984; pp 149−150. (b) Leffler, J. E. J. Org. Chem.
1955, 20, 1202.
(29) In contrast, other aliphatic C−H bond functionalization
reactions show a preference for equatorial C−H bonds: (a) Chen,
K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed. 2009, 48,
9705. (b) Chen, M. S.; White, M. C. Science 2007, 318, 783. (c) Wehn,
P. M.; Lee, J.; Du Bois, J. Org. Lett. 2003, 5, 4823.
(10) For recent reports of copper-catalyzed aliphatic C−H bond
amination from azides, see: (a) Badiei, Y. M.; Dinescu, A.; Dai, X.;
Palomino, R. M.; Heinemann, F. W.; Cundari, T. R.; Warren, T. H.
Angew. Chem., Int. Ed. 2008, 47, 9961. (b) Badiei, Y. M.;
Krishnaswamy, A.; Melzer, M. M.; Warren, T. H. J. Am. Chem. Soc.
2006, 128, 15056.
(11) For reports of Ru-catalyzed amination, see: (a) Milczek, E.;
Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825. (b) Shou,
W. G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847.
(12) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett.
2009, 11, 3598.
(13) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem.
Soc. 2004, 126, 15378.
(14) Azepines, common aryl nitrene byproducts, were never
observed for any of the substrates investigated. In general, the only
byproduct observed in our Rh2(II)-catalyzed amination reaction was
aniline.
(15) Smolinsky, G. J. Am. Chem. Soc. 1961, 83, 2489.
(16) For leading reports on the mechanism of related metal-mediated
C−H bond amination reactions, see: (a) Lyaskovskyy, V.; Suarez, A. I.
O.; Lu, H.; Jiang, H.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011,
133, 12264. (b) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J.
Tetrahedron 2009, 65, 3042. (c) Fiori, K. W.; Du Bois, J. J. Am. Chem.
Soc. 2007, 129, 562.
(17) For crystal structures of metal−azide complexes, see: (a) Water-
man, R.; Hillhouse, G. L. J. Am. Chem. Soc. 2008, 130, 12628. (b) Dias,
H. V. R.; Polach, S. A.; Goh, S.-K.; Archibong, E. F.; Marynick, D. S.
Inorg. Chem. 2000, 39, 3894. (c) Fickes, M. G.; Davis, W. M.;
Cummins, C. C. J. Am. Chem. Soc. 1995, 117, 6384. (d) Proulx, G.;
Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 6382.
7265
dx.doi.org/10.1021/ja301519q | J. Am. Chem. Soc. 2012, 134, 7262−7265