L. Duan, G. Schnakenburg, J. Daniels, R. Streubel
FULL PAPER
6: Pink solid, crystallized from Et2O at –30 °C; yield: 220 mg
ether (1 mL)] in TMEDA (1 mL) and cooled to –78 °C. The reac-
1
(0.21 mmol, 21%); m.p. 143–145 °C. H NMR: δ = 0.17 [s, 36 H, tion mixture was stirred for 1 h, and then a 31P{1H} NMR spec-
2
1
Si(CH3)3], 3.40 [d, J(P,H) = 2.2 Hz, 2 H, PCH] ppm. 13C{1H}
trum was recorded. 7: δ = 101.8 [q, J(P,Li) = 62.1 Hz] ppm. 8: δ =
NMR: δ = 1.8 [s, Si(CH3)3], 33.2 [d, 1J(P,C) = 36.7 Hz, PCH], 196.4
39.1 [s, J(P,H) = 195.9 Hz] ppm.
1
2
2
[d, J(P,C) = 4.0 Hz, cis-CO], 201.8 [d, J(P,C) = 14.4 Hz, trans-CO]
ppm. 31P{1H} NMR: δ = 324.2 [ssat 1J(W,P) = 146.5, J(P,H)
, =
1
115.9 Hz] ppm. IR (KBr): ν = 1254 [w, ν(P=P)], 1927 [s, ν(CO)],
˜
Acknowledgments
1987 [m, ν(CO)], 2062 [m, ν(CO)], 2077 [s, ν(CO)] cm–1. MS (EI):
m/z (%) = 1028.0 (25) [M]+·. C24H38O10P2Si4W2 (1028.55): calcd.
C 28.03, H 3.72; found C 28.47, H 4.26.
We would like to acknowledge financial support by the Deutsche
Forschungsgemeinschaft (DFG) (STR411/26-2 and STR411/29-1)
and the Cost Action (cm0802 “PhoSciNet”).
Synthesis of Complex 3d: Isopropylamine (0.14 mL, 1.0 mmol) was
added to a stirred solution of 2H-azaphosphirene complex 1
(617 mg, 1.0 mmol) in toluene (30 mL) at 75 °C, and the reaction
mixture was stirred for 3 h. After removal of all volatiles in vacuo
(ca. 10–2 mbar), the final product 3d was purified by washing with
n-pentane at low temperature (–60 °C). Yellow solid, crystallized
from n-pentane at –30 °C; yield: 200 mg (0.33 mmol, 33%); m.p.
[1] a) G. Becker, B. Eschbach, D. Kaeshammer, O. Mundt, Z.
Anorg. Allg. Chem. 1994, 620, 29–40; b) J. D. Smith, Angew.
Chem. 1998, 110, 2181–2183; Angew. Chem. Int. Ed. 1998, 37,
2071–2073; c) K. Izod, Adv. Inorg. Chem. 2000, 50, 33–108; d)
G. W. Rabe, L. M. Liable-Sands, A. L. Rheingold, Inorg. Chim.
Acta 2002, 329, 151–154; e) K. Izod, J. C. Stewart, W. Clegg,
R. W. Harrington, Dalton Trans. 2007, 257–264; f) F. Pauer,
P. P. Powe r i n Lithium Chemistry: A Theoretical and Experi-
mental Overview (Eds.: A. M. Sapse, P. v. R. Schleyer), Wiley,
New York, 1994, p. 361.
[2] a) F. Mathey, N. H. Tran Huy, A. Marinetti, Helv. Chim. Acta
2001, 84, 2938–2957; b) F. Mathey, Angew. Chem. 2003, 115,
1616–1643; Angew. Chem. Int. Ed. 2003, 42, 1578–1604; c) K.
Lammertsma, Top. Curr. Chem. 2003, 229, 95–119; d) H.
Aktas, C. J. Slootweg, K. Lammertsma, Angew. Chem. 2010,
122, 2148–2159; Angew. Chem. Int. Ed. 2010, 49, 2102–2113.
[3] a) A. Marinetti, F. Mathey, J. Fischer, A. Mitschler, J. Chem.
Soc., Chem. Commun. 1982, 667–668; b) S. Holand, F. Mathey,
Organometallics 1988, 7, 1796–1801; c) R. Streubel, A. Kusen-
berg, J. Jeske, P. G. Jones, Angew. Chem. 1994, 106, 2564–2566;
Angew. Chem. Int. Ed. Engl. 1994, 33, 2427–2428; d) J. B. M.
Wit, G. T. van Eijkel, F. J. J. de Kanter, M. Schakel, A. W.
Ehlers, M. Lutz, A. L. Spek, K. Lammertsma, Angew. Chem.
1999, 111, 2716–2719; Angew. Chem. Int. Ed. 1999, 38, 2596–
2599; e) N. H. Tran Huy, L. Richard, F. Mathey, Angew. Chem.
2001, 113, 1293–1295; Angew. Chem. Int. Ed. 2001, 40, 1253–
1257; f) R. Streubel, N. Hoffmann, H. M. Schiebel, F. Ruthe,
P. G. Jones, Eur. J. Inorg. Chem. 2002, 957–967; g) N.
Hoffmann, P. G. Jones, R. Streubel, Angew. Chem. 2002, 114,
1226–1228; Angew. Chem. Int. Ed. 2002, 41, 1186–1188.
[4] A. Özbolat, G. von Frantzius, J. M. Perez, M. Nieger, R. Streu-
bel, Angew. Chem. 2007, 119, 9488–9491; Angew. Chem. Int.
Ed. 2007, 46, 9327–9330.
[5] A. Özbolat, G. v. Frantzius, W. Hoffbauer, R. Streubel, Dalton
Trans. 2008, 2674–2676.
[6] G. Huttner, H. D. Müller, Angew. Chem. 1975, 87, 596–597;
Angew. Chem. Int. Ed. Engl. 1975, 14, 571–572.
[7] R. Streubel, Ph. D. Thesis, University of Bonn, 1990.
[8] K. Diemert, A. Hinz, W. Kuchen, D. Lorenzen, J. Organomet.
Chem. 1990, 393, 379–387.
[9] R. Streubel, S. Priemer, F. Ruthe, P. G. Jones, Eur. J. Inorg.
Chem. 2000, 1253–1259.
[10] R. Streubel, J. Jeske, P. G. Jones, Angew. Chem. 1994, 106, 115–
117; Angew. Chem. Int. Ed. Engl. 1994, 33, 80–82.
[11] a) A. Marinetti, F. Mathey, Organometallics 1982, 1, 1488–
1492; b) F. Mercier, F. Mathey, Tetrahedron Lett. 1985, 26,
1717–1720.
[12] J. G. Smith, D. T. Thompson, J. Chem. Soc. A 1967, 1694–1697.
[13] B. Hoge, T. Herrmann, C. Thosen, I. Pantenburg, Inorg. Chem.
2003, 42, 3623–3632.
1
4
73 °C. H NMR: δ = 0.25 [d, J(P,H) = 0.6 Hz, 9 H, Si(CH3)3], 0.29
4
2
[d, J(P,H) = 0.4 Hz, 9 H, Si(CH3)3], 0.96 [d, J(P,H) = 6.2 Hz, 1 H,
PCH], 1.18 [d, J(H,H) = 6.4 Hz, 6 H, NCH(CH3)2], 3.26 (br., 1 H,
2
3
1
NH), 3.40 [q, J(P,H) = 7.0 Hz, 1 H, NCH(CH3)2], 7.09 [d, J(P,H)
=
=
320.2 Hz, 1 H, PH] ppm. 13C{1H} NMR: δ = –1.3 [d, J(P,C)
3
2.3 Hz, Si(CH3)3], 0.0 [d, 3J(P,C) = 3.2 Hz, Si(CH3)3], 22.3 [d, 1J(P,C)
3
= 7.8 Hz, PCH], 22.7 [d, J(P,C) = 4.5 Hz, NCH(CH3)2], 46.2 [d,
2J(P,C) = 3.2 Hz, NCH(CH3)2], 195.1 [d, J(P,C) = 7.1 Hz, cis-CO],
2
197.4 [d, 2J(P,C) = 22.0 Hz, trans-CO] ppm. 31P{1H} NMR: δ = 11.4
1
[dsat
,
1J(W,P) = 255.6 Hz, J(P,H) = 320.4 Hz] ppm. IR (KBr): ν =
˜
1920 [vs, ν(CO)], 2068 [s, ν(CO)], 2226 [w, ν(PH)], 2956 [w, ν(CH/
CH3)] cm–1. MS (EI): m/z (%) = 573.0 (49) [M]+·, 545.0 (41) [M –
CO]+·, 517.0 (39) [M – 2 CO]+·, 489.0 (85) [M – 3 CO]+·, 461.0
(20) [M – 4 CO]+·, 433.0 (71) [M – 5 CO]+·, 73.0 (82) [SiMe3]+·.
C15H28NO5PSi2W (573.39): calcd. C 31.42, H 4.92, N 2.44; found
C 31.80, H 4.98, N 2.21.
Synthesis of Complex 3e: Aniline (92 μL, 1.0 mmol) was added to
a stirred solution of 2H-azaphosphirene complex 1 (617 mg,
1.0 mmol) in toluene (30 mL) at 75 °C, and then the reaction mix-
ture was stirred for 3 h. After removal of all volatiles in vacuo (ca.
10–2 mbar), the final product 3e was purified by column
chromatography on silica gel (–20 °C, 2ϫ9.5 cm, petroleum ether/
Et2O = 9:1). Yellow solid, crystallized from n-pentane at –30 °C;
yield: 297 mg (0.49 mmol, 49%); m.p. 90 °C. 1H NMR: δ = 0.20
4
4
[d, J(P,H) = 0.4 Hz, 9 H, Si(CH3)3], 0.28 [d, J(P,H) = 0.8 Hz, 9 H,
Si(CH3)3], 1.83 [dd, 2J(P,H) = 13.6 Hz, J(H,H) = 7.6 Hz, 1 H, PCH],
3
3
3.97 (br., 1 H, NH), 6.85 [d, J(H,H) = 7.5 Hz, 2 H, o-Ph], 7.00 [t,
3J(H,H) = 7.6 Hz, 1 H, p-Ph], 7.33 [t, J(H,H) = 7.4 Hz, 2 H, m-Ph],
3
7.49 [d, J(P,H) = 357.7 Hz, 1 H, PH] ppm. 13C{1H} NMR: δ = 0.0
1
[d, 3J(P,C) = 1.3 Hz, Si(CH3)3], 15.1 [d, 1J(P,C) = 7.8 Hz, PCH], 115.9
[d, 3J(P,C) = 4.5 Hz, o-Ph], 120.0 (s, p-Ph), 128.1 (s, m-Ph), 141.2 [d,
2J(P,C) = 9.7 Hz, ipso-Ph-C], 195.1 [d, J(P,C) = 6.5 Hz, cis-CO],
2
196.6 [d, J(P,C) = 23.2 Hz, trans-CO] ppm. 31P{1H} NMR: δ = 5.3
2
1
[dsat
,
1J(W,P) = 253.0 Hz, J(P,H) = 357.3 Hz] ppm. IR (KBr): ν =
˜
1904 [s, ν(CO)], 1918 [s, ν(CO)], 1946 [vs, ν(CO)], 1986 [m, ν(CO)],
2071 [s, ν(CO)], 2310 [w, ν(PH)], 2960 [w, ν(CH/CH3)], 3419 [br.,
ν(NH)] cm–1. MS (EI): m/z (%) = 607.1 (40) [M]+·, 579.1 (9) [M –
CO]+·, 551.1 (8) [M – 2 CO]+·, 523.1 (100) [M – 3 CO]+·, 73.0 (42)
[SiMe3]+·. C18H26NO5PSi2W (607.40): calcd. C 35.59, H 4.31, N
2.31; found C 35.73, H 4.61, N 2.06.
[14] a) J. Borm, L. Zsolnai, G. Huttner, Angew. Chem. 1983, 95,
1018–1018; Angew. Chem. Int. Ed. Engl. 1983, 22, 977–978; b)
G. Huttner, J. Borm, L. Zsolnai, J. Organomet. Chem. 1986,
304, 309–321.
Generation of Complexes 7 and 8: A solution of 3a (56 mg,
0.1 mmol) and 12-crown-4 (16 μL) in tetramethylethylenediamine
(TMEDA; 1 mL) was added dropwise to a solution of LDA
[0.11 mmol; freshly prepared from n-butyllithium (75 μL, 1.6 m,
0.11 mmol) and diisopropylamine (20 μL, 0.1 mmol) in diethyl
[15] H. Lang, O. Orama, G. Huttner, J. Organomet. Chem. 1985,
291, 293–309.
2318
www.eurjic.org
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2012, 2314–2319