122
K. Arya et al. / Journal of Fluorine Chemistry 137 (2012) 117–122
(b) J. Ranke, S. Stolte, R. Stormann, J. Arning, B. Jastorff, Chem. Rev. 107 (2007)
2183–2206.
of concentrations of histamine needed to produce half-maximal
responses in the presence and absence of different concentrations
(B) of antagonists. pA2 values, reported in Table 5, are the average
of five observations.
[2] (a) N.V. Plechkova, K.R. Seddon, Chem. Soc. Rev. 37 (2008) 123–150;
(b) T.L. Greaves, C.J. Drummond, Chem. Rev. 108 (2008) 206–237.
[3] M.J. Earle, P.B. McCormac, K.R. Seddon, Chem. Commun. (1998) 2245–2246.
[4] F. Liu, M.B. Abrams, R.T. Baker, W. Tumas, Chem. Commun. (2001) 433–434.
[5] E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, J. Am. Chem. Soc. 124 (2002) 926–927.
[6] (a) A. Do¨mling, Chem. Rev. 106 (2006) 17–89;
6. Antidiabetic activity
(b) C. Hulme, V. Gore, Curr. Med. Chem. 10 (2003) 51–80;
(c) J. Zhu, Eur. J. Org. Chem. (2003) 1133–1144;
6.1. Cut-off lethal dose (LD50
)
(d) A. Do¨mling, I. Ugi, Angew. Chem. Int. Ed. 39 (2000) 3168–3210.
[7] (a) B.M. Trost, Angew. Chem. Int. Ed. Engl. 34 (1995) 259–281;
(b) P.A. Wender, S.T. Handy, D.L. Wright, Chem. Ind. (1997) 765–769.
[8] ;(a) J. Zhu, H. Bienayme, Multicomponent Reactions, Wiley-VCH, Weinheim, 2005
(b) T. Ngouansavanh, J. Zhu, Angew. Chem. Int. Ed. 46 (2007) 5775–5778;
(c) E.K. Laurent, M. Gizolme, L. Grimaud, J. Oble, J. Org. Lett. 8 (2006) 4019–4021;
(d) P.A. Tempest, Curr. Opin. Drug Disc. 8 (2005) 776–788;
(e) K. Lu, T. Luo, Z. Xiang, Z. You, R. Fathi, J. Chen, Z. Yang, J. Comb. Chem. 7 (2005)
958–967.
All the compounds synthesized were tested for acute toxicity
test. Toxicity was observed at the doses of 300, 1000, 2000 mg/kg
of body weight. More than 50% of animals died at the dose of
2000 mg/kg of body weight. Thus for the screening of antidiabetic
activity, the dose selected was 200 mg/kg of body weight (i.e., 1\10
of the 2000 mg/kg of body weight) as per the OECD guidelines [30].
Metformin drug was used as standard and given to rats at dose of
5 mg/kg body weight. A single dose (150 mg/kg, body weight) of
Alloxan monohydrate (5%, w/v in sterile water) was dissolved in
normal saline used for the induction of diabetes and injected
intraperitoneally to Wistar albino rats weighing 150–200 g. The
induction of diabetes was confirmed by estimation of elevated
fasting blood glucose level. The rats having blood glucose level
above 200 mg/dl of blood were selected for the study. Blood was
collected from retro orbital plexus of the eye under light ether
anesthesia using capillary tube. Sodium fluoride and sodium
oxalate were used as anti coagulant. All the compounds synthe-
sized were tested for antidiabetic activity, the fasting serum
glucose levels were determined according to GOD-POD method
[31].
[9] M.C. Sharma, N.K. Sahu, D.V. Kohli, S.C. Chaturvedi, DJNB 4 (2009) 223–232.
[10] (a) For selected reviews on thiazolidinones, see M. Abhinit, M. Ghodke, N.A.
Pratima, Int. J. Pharm. Pharm. Sci. 1 (2009) 47–64;
(b) A. Verma, S.K. Saraf, Eur. J. Med. Chem. 43 (2008) 897–905;
(c) S.P. Singh, S.S. Parmar, K. Raman, V.I. Stenberg, Chem. Rev. 81 (1981) 175–
203.
[11] R.S. Lodhi, S.S. Srivastava, S.K. Srivastava, Indian J. Chem. 37 (1998) 899–903.
[12] (a) H.D. Joshi, P.S. Upadhyay, A. Baxi, J. Indian J. Chem. 39 (2000) 967–970;
(b) D.P. Bhoot, R.C. Khunt, V.K. Shankhavara, H.H. Parekh, J. Sci. I. R. Iran 17 (2006)
323–325.
[13] S.K. Srivastava, R.B. Pathak, S.C. Bahel, Indian J. Chem. 30 (1991) 620–623.
[14] (a) H.A. Al-Khamees, S.M. Bayomi, H.A. Kandil, K.E.H. Tahir, Eur. J. Med. Chem. 25
(1990) 103–106;
(b) P. Kutschy, M. Suchy, K. Monde, N. Harada, R. Maruskova, Z. Curillova, M.
Dzurilla, M. Miklosova, R. Mezencev, J. Majzis, Tetrahedron Lett. 43 (2002)
9489–9492.
[15] (a) M.H. Khan, S. Tewari, K. Begum, Nizamuddin, Indian J. Chem. 37 (1998) 1075–
1077;
(b) K.C. Joshi, R. Joshi, J. Indian Chem. Soc. 76 (1999) 515–520;
(c) M. Rajopadhye, F.D. Popp, J. Heterocycl. Chem. 24 (1987) 1637–1642;
(d) S. Ali, M. Alam, Arch. Pharm. Res. 17 (1994) 131–133.
[16] (a) A. Dandia, S. Khanna, K.C. Joshi, J. Indian Chem. 30B (1991) 469–472, and
reference there in;
Antidiabetic activity of test compounds given in Table 6, Table 7
shows that compounds 4a, 4b, 4e, 5a, 5b and 5e were found to be
most efficient for reduction of serum glucose level at 200 mg/kg
dose and antidiabetic data of these compounds was comparable
with standard drugs (Metformin) at 7th day of the study.
(b) R. Filler, Chem. Tech. 4 (1974) 752–756.
[17] (a) P. Khanna, A. Saxena, L. Khanna, S. Bhagat, S.C. Jain, Arkivoc 7 (2009) 119–125;
(b) S.K. Srivastava, S.L. Srivastava, S.D. Srivastava, J. Indian Chem. Soc. 77 (2000)
104–105;
(c) R.C. Sharma, D. Kumar, J. Indian Chem. Soc. 77 (2000) 492–493.
[18] C.P. Homes, J.P. Chinn, C.G. Look, E.M. Gordon, M.A. Gallop, J. Org. Chem. 60 (1995)
7328–7333.
7. Conclusion
Improved synthesis of biologically active scaffold fluorinated
spiro indole [thiazine/thiazolidinone] using catalytic amount of
ionic liquids gave high substrate conversion and product
selectivity. Synthesis of spiro compounds with ionic liquid as
reaction medium proceeded smoothly towards completion and
products were conveniently decanted out from the ionic liquid. Use
of such a reaction medium should be appreciated for its easy
preparation, convenient separation, and recycle of the catalyst, low
cost and eco-friendly nature. The titled compounds also inhibit the
contractions induced by histamine on guinea pig ileum. The
measurement of pA2 values suggested that the reported com-
pounds showed H1-antagonism.
[19] (a) T. Srivastava, W. Haq, S.B. Katti, Tetrahedron 58 (2002) 7619–7624;
(b) V. Gududuru, V. Nguyen, J. Dalton, D.D. Miller, Synlett 13 (2004) 2357–2358.
[20] X. Zhang, X. Li, D. Li, G. Qu, J. Wang, P.M. Loiseau, X. Fan, Bioorg. Med. Chem. Lett.
19 (2009) 6280–6283.
[21] (a) K. Arya, A. Dandia, J. Fluorine Chem. 128 (2007) 224–231;
(b) A. Dandia, R. Singh, K. Arya, Phosphorus, Sulfur Silicon Relat Elem. 179 (2004)
551–564;
(c) A. Dandia, R. Singh, K. Arya, Org. Prep. Proced. Int. 35 (2003) 387–394;
(d) K.C. Joshi, A. Dandia, S. Bhagat, J. Fluorine Chem. 48 (1990) 169–188.
[22] (a) K. Arya, A. Dandia, R. Singh, Lett. Org. Chem. 6 (2009) 100–105;
(b) K. Arya, A. Dandia, Bioorg. Med. Chem. Lett. 18 (2008) 114–119;
(c) K. Arya, A. Dandia, Bioorg. Med. Chem. Lett. 17 (2007) 3298–3304;
(d) K. Arya, M. Agarwal, Bioorg. Med. Chem. Lett. 17 (2007) 86–93.
[23] E.P. Parry, J. Catal. 2 (1963) 371–379.
[24] Y.I. Yang, Y. Kou, Chem. Commun. (2004) 226–227.
[25] S.L. Chen, S.J. Ji, T.P. Loh, Tetrahedron Lett. 44 (2003) 2405–2408.
[26] J.C. Emmet, G.J. Durant, C.R. Ganellii, A.M. Roe, J.L. Turner, J. Med. Chem. 25 (1982)
1168–1174.
Acknowledgments
[27] (a) P.A. Borea, V. Bertolasi, G. Gilli, Arzneim. -Forech 36 (1986) 895–899;
(b) S. Naruto, I. Motoc, G.R. Marshall, Eur. J. Med. Chem. 20 (1986) 529–534.
[28] A. Dandia, V. Kaur, P. Singh, Ind. J. Pharm. Res. 55 (1993) 129–136.
[29] H.O. Schild, Pharmacol. Rev. 9 (1967) 242–246.
Authors are thankful to UGC, New Delhi for financial support.
References
[30] OECD, Guidance Documents on Acute Oral Toxicity, Environmental Health and
Safety Monograph Series on Testing and Assessment No. 24, 2000.
[31] J.B. Henry, Clinical and diagnosis management by laboratory methods, W.B.
Saunders, Philadelphia, 1991.
[1] (a) P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH Verlag,
2008;