S. Thurow et al. / Tetrahedron Letters 53 (2012) 2651–2653
2653
2. (a) Marcantoni, E.; Massaccesi, M.; Petrini, M. J. Org. Chem. 2000, 65, 4553; (b)
Kuligowski, C.; Bezzenine-Lafollée, S.; Chaume, G.; Mahuteau, J.; Barrière, J.-C.;
Bacqué, E.; Pancrazi, A.; Ardisson, J. J. Org. Chem. 2002, 67, 4565.
3. Lan, H. W.; Cooke, P. A.; Pattenden, G.; Bandaranayake, W. M.;
Wickramasinghe, W. A. J. Chem. Soc., Perkin Trans. 1 1999, 847.
4. (a) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205; (b) Cao, C.; Fraser, L. R.;
Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614; (c) Weiss, C. J.; Wobser, S. D.;
Marks, T. J. J. Am. Chem. Soc. 2009, 131, 2062; (d) Ogawa, A.; Ikeda, T.; Kimura,
K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108; (e) Malyshev, D. A.; Scott, N. M.;
Marion, N.; Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P.; Nolan, S. P.
Organometallics 2006, 25, 4462.
5. (a) Waters, M. S.; Cowen, J. A.; McWilliams, J. C.; Maligres, P. E.; Askin, D.
Tetrahedron Lett. 2000, 41, 141; (b) Dabdoub, M. J.; Dabdoub, V. B.; Lenardão, E.
J.; Hurtado, G. R.; Barbosa, S. L.; Guerrero, P. G., Jr.; Nazário, C. E. D.; Viana, L. H.;
Santana, A. S.; Baroni, A. C. M. Synlett 2009, 986; (c) Wadsworth, D. H.; Detty, M.
R. J. Org. Chem. 1980, 45, 4611.
6. Manarin, F.; Roehrs, J. A.; Prigol, M.; Alves, D.; Nogueira, C. W.; Zeni, G.
Tetrahedron Lett. 2007, 48, 4805.
7. Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P. Organometallics 2006, 25, 1970.
8. Corma, A.; González-Arellano, C.; Iglesias, M.; Sánchez, F. Appl. Catal., A: Gen.
2010, 375, 49.
9. Banerjee, S.; Das, J.; Santra, S. Tetrahedron Lett. 2009, 50, 124.
10. Sridhar, R.; Surendra, K.; Krishnaveni, N. S.; Srinivas, B.; Rao, K. R. Synlett 2006,
3495.
11. (a) Silva, M. S.; Lara, R. G.; Marczewski, J. M.; Jacob, R. G.; Lenardão, E. J.; Perin, G.
Tetrahedron Lett. 2008, 49, 1927; (b) Lenardão, E. J.; Silva, M. S.; Lara, R. G.;
Marczewski, J. M.;Sachini, M.;Jacob, R. G.;Alves, D.; Perin, G. Arkivoc2011, 2, 272.
12. Schneider, C. C.; Godoi, B.; Prigol, M.; Nogueira, C. W.; Zeni, G. Organometallics
2007, 26, 4252.
disulfide was used instead of benzenethiol; no product was veri-
fied even after 24 h of stirring at 60 °C.
With this optimized condition in hand,17 a detailed study was
performed with aliphatic and aromatic thiols and several alkynes,
as propargyl alcohols, phenylacetylene, and octyne, showing the
generality of the method. The results depicted in Table 1 show that
[bmim][SeO2(OCH3)] was an excellent catalyst, affording a wide
range of vinyl sulfides. Concerning the stereochemistry of prod-
ucts, for all the hydroxylated alkynes 1a–1d, a mixture of Mark-
ovnikov and anti-Markovnikov adducts was obtained (Table 1,
entries 1–12). Despite the low selectivity, a good yield was
achieved in most of the tested examples. An exception was the
reaction between octyne 1e with benzenethiol 2a, which afford
the respective anti-Markovnikov adduct 3n in 30% yield and a Z/E
ratio = 80:20 (entry 13). Under our conditions, phenyl acetylene
1f reacted with 2a to afford a 1:1 mixture of isomers 3n and 4n
in excellent yield (Table 1, entry 14). The best selectivity was ob-
tained when p-chlorobenzenethiol 2e was used, in preference to
the anti-Markovnikov adduct, (Z)-3o (entry 15).
To speculate if a radical mechanism could be involved, the reac-
tion was also performed in the presence of hydroquinone. Thus,
when a mixture of 1a, 2a, and the ionic liquid reacted in the pres-
ence of hydroquinone (10 mol %), the respective adducts were ob-
tained in same yields and isomeric relation as described above
(Table 1, entry 1).
In conclusion, we have described a new application for the sele-
nium-based ionic liquid [bmim][SeO2(OCH3)], which was an effi-
cient catalyst for the synthesis of a range of vinyl sulfides via
hydrothiolation of alkynes. This is a useful alternative to the exist-
ing methodologies, once no strong bases are involved.
13. (a) Tadesse, H.; Luque, R. Energy Environ. Sci. 2011, 4, 3913; (b) Welton, T. Chem.
Rev. 1999, 99, 2071; (c) Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002,
102, 3667; (d)Wasserscheid, P., Welton, P., Eds.Ionic Liquids in Synthesis;
Wiley-VCH: Weinheim, 2003; (e) Rantwijk, F.; Sheldon, R. A. Chem. Rev. 2007,
107, 2757; (f) Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.;
Bonacorso, H. G. Chem. Rev. 2008, 108, 2015.
14. (a) Lenardão, E. J.; Feijó, J. O.; Thurow, S.; Perin, G.; Jacob, R. G.; Silveira, C. C.
Tetrahedron Lett. 2009, 50, 5215; (b) Lenardão, E. J.; Borges, E. L.; Mendes, S. R.;
Perin, G.; Jacob, R. G. Tetrahedron Lett. 2008, 49, 1919; (c) Lenardão, E. J.;
Mendes, S. R.; Ferreira, P. C.; Perin, G.; Silveira, C. C.; Jacob, R. G. Tetrahedron
Lett. 2006, 47, 7439.
15. For the synthesis of [bmim][SeO2(OCH3)] see: Kim, H. S.; Kim, Y. J.; Lee, H.;
Park, K. Y.; Lee, C.; Chin, C. S. Angew. Chem., Int. Ed. 2002, 41, 4300.
16. Thurow, S.; Pereira, V. A.; Martinez, D. M.; Alves, D.; Perin, G.; Jacob, R. G.;
Lenardão, E. J. Tetrahedron Lett. 2011, 52, 640.
Acknowledgments
The authors thank FAPERGS (PRONEX 10/0005-1, PRONEM 11/
2026-4 and PqG 11/0881-2), CNPq, and CAPES for financial
support.
17. General procedure for the synthesis of vinyl sulfides with [bmim][SeO2(OCH3)]: In a
Schlenk tube under nitrogen atmosphere and at 60 °C, propargyl alcohol (1a;
0.067 g; 1.2 mmol) and benzenethiol (2a; 0.110 g; 1 mmol) were added to
[bmim][SeO2(OCH3)]15 (0.0158 g, 0.05 mmol). The reaction mixture was
allowed to stir at 60 °C for the time indicated in Table 1. The progress of the
reaction was monitored by TLC or GC. After the reaction was complete, water
(15 mL) was added and the organic phase was extracted with EtOAc
(3 Â 5 mL), dried over MgSO4, and concentrated under vacuum. The residue
was purified by column chromatography on silica gel using hexanes/ethyl
acetate (90:10) as eluent, yielding a mixture of 3a and 4a (0.133 g, 80%). 1H
NMR (400 MHz, CDCl3)11b d Z isomer: 7.21–7.42 (m, 5H); 6.35 (dt, J 9.2 and 1.2,
1H); 5.96 (dt, J 9.2 and 6.6, 1H); 4.37 (dd, J 6.6 and 1.2, 2H); 1.92 (br s, 1H); E
isomer: 7.21–7.42 (m, 5H); 6.46 (dt, J 15.6 and 1.2, 1H); 5.95 (dt, J 15.6 and 6.8,
1H); 4.20 (dd, J 6.8 and 1.2, 2H); 1.92 (br s, 1H); Markovnikov adduct: 7.21–
7.42 (m, 5H); 5.57 (s, 1H); 5.24 (s, 1H); 4.16 (s, 2H); 1.92 (br s, 1H).
References and notes
1. For the synthetic utility of vinyl sulfides see, for example: (a) Aucagne, V.;
Lorin, C.; Tatibouët, A.; Rollin, P. Tetrahedron Lett. 2005, 46, 4349; (b) Muraoka,
N.; Mineno, M.; Itami, K.; Yoshida, J.-I. J. Org. Chem. 2005, 70, 6933; (c)
Woodland, C. A.; Crawley, G. C.; Hartley, R. C. Tetrahedron Lett. 2004, 45, 1227;
(d) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104,
2239; (e) Oae, S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press:
Boca Raton, FL, 1991; (f) Cremlyn, R. J. An Introduction to Organosulfur
Chemistry; Wiley & Sons: New York, 1996.