and Zn(OAc) Ω2H O (1.10 equiv.) in chloroform–methanol
saturated NaHCO , washed once with distilled water, then
dried over Na SO . The solvent was evaporated, and the
product was isolated as purple crystals which were dried under
2
2
3
4
(151) (100 ml) and heating the solution at reflux overnight.
The solvent was then evaporated, and the residual solids were
partitioned between water and CH Cl . The organic layer was
2
vacuum at 40 °C; yield: 100%; UV–VIS l/nm (e): 424 (242 000),
516 (14 000), 552 (5000), 592 (4000), 648 (2000); d
2
2
separated and dried (Na SO ). The solvent was evaporated to
2
4
H
afford a violet solid. The solid was redissolved in a minimum
amount of chloroform then precipitated into methanol, so the
compound could be handled as a powder. (Nb the characteriz-
ation of 1b–d is given earlier in this section.)
([2H DMSO, 2.49 ppm) 8.93 (s, 8 H, b-H), 7.05 (s, 8 H, Ar-H),
6
6.64 (s, 4 H, Ar-H), 3.81 (s, br, Ar-OH). d ([2H ]DMSO,
C
6
39.5 ppm) 156.54 (ArC-OH); 144.97 (ArC-porph); 127.50 (b C);
117.81 (meso C); 114.15, 102.50 (ArC-H). Mass spectrum
(MALDI-TOF): m/z calc. 743; found 753.
Zn[G-1] P 1a. This was prepared from H [G-1] P 3a;
yield: 100%; UV–VIS l/nm (e) 428 (568 000), 560 (22 000), 600
(7000). d 8.98 (s, 8 H, b-H), 7.48 (d, 8 H, Ar-H), 7.35 (m, 40
4
2
4
Financial support of this research by the National Science
Foundation (DMR-9641291) and by the MURI program of
AFOSR is acknowledged with thanks.
H
H, Ph-H), 7.02 (t, 4 H, Ar-H), 5.18 (s, 16 H, Bn-H). d 157.78
C
(ArC-O); 149.89 (a C); 144.63 (ArC-porph); 136.75 (PhC-CH );
2
131.97 (b C); 128.58, 128.01, 127.63 (Ph C-H); 120.67 (meso
References
C); 115.06, 96.67 (Ar C-H). Mass spectrum (MALDI-TOF):
m/z calc. 1527; found 1538 (Calc. for C H N O Zn; C 78.65,
H 5.02, N 3.67; found C 78.60, H 5.05, N 3.54%).
1
(a) G. R. Seely, Photochem. Photobiol., 1978, 2, 107; (b) R. Wagner,
J. Ruffing, B. Breakwell and J. Lindsey, T etrahedron. L ett., 1991,
32, (14), 1703; (c) R. Wagner, J. Lindsey, I. Turowska-Tyrk and
W. Scheidt, T etrahedron, 1994, 50, 11097.
100 76
4 8
Zinc tetrakis(3,5-dihydroxyphenyl)porphyrin 4. Tetrakis(3,5-
dihydroxyphenyl)porphyrin
2
3
J. Collman, J. Brauman, J. Fitzgerald, P. Hampton, Y. Naruta,
J. Sparapany and J. Ibers, J. Am. Chem. Soc., 1988, 110, 3477.
(a) S. Quici, S. Banfi and G. Pozzi, Gazz. Chim. Ital., 1993, 123, 597;
(b) C. Quintana, R. Assink and J. A. Shelnutt, J. Inorg. Chem., 1989,
28, 3421; (c) J. K. M. Sanders, Proc. Ind. Acad. Sci., Chem. Sci.,
1994, 106 (5), 983; (d) K. M. Faulkner, S. I. Liochev and
I. Fridovich, J. Biol. Chem., 1994, 269 (38), 23471; (e) T. Katsuki,
Kikan Kagaku Sosetsu, 1993, 19, 67; ( f ) D. R. Benson,
R. Valentekovich, S. W. Tam and F. Diederich, Helv. Chim. Acta,
1993, 76 (5), 2034; (g) H. L. Anderson, R. P. Bonar-Law,
L. G. Mackay, S. Nicholson and J. K. M. Sanders, NAT O ASI
Ser., Ser. C, 1992, 371 (Supramol. Chem.), 359; (h) D. Mansuy and
M. Fontecave, Biochem. Biophys. Res. Commun., 1982, 104 (4),
1651.
(a) F. R. Long, ‘Porphyrin Chemistry Advances’ Ann Arbor Science
Publishers Inc., Ann Arbor, 1979a; (b) F. Montanari and
L. Casella, ‘Metalloporphyrins Catalyzed Oxidations’, Kluwer
Academic Press, Boston, 1994; (c) R. A. Sheldon,
‘Metalloporphyrins in Catalytic Oxidations’, Dekker, New York,
1994.
(a) D. A. Tomalia, A. M. Naylor and W. A. Goddard III, Angew.
Chem., Int. Ed. Engl., 1990, 29, 138; (b) G. R. Newkome,
C. N. Moorefield and G. R. Baker, Aldrichim. Acta, 1992, 25, 31; (c)
B. I. Voit, Acta Polym., 1995, 46, 87; (d) E. M. M. de Brabander-
van den Berg, A. Nijenhuis, M. Mure, J. Keulen, R. Reintjens,
B. Vandenbooren, B. Bosman, R. de Raat, T. Frijns, S. v.d. Wal,
M. Castelijns, J. Put and E. W. Meijer, Macromol. Symp., 1994, 77,
51; (e) D. A. Tomalia, Adv. Mater., 1994, 7/8, 529.
(a) J. M. J. Fre´chet, Y. Jiang, C. J. Hawker and A. E. Philippides,
Preprints IUPAC Int. Symp. Functional Polym., Seoul, 1989, p. 19;
(b) C. J. Hawker and J. M. J. Fre´chet, J. Chem. Soc., Chem.
Commun., 1990, 1010; (c) J. M. J. Fre´chet, Science, 1994, 263, 1710.
(a) P. J. Dandliker, F. Diederich, M. Gross, C. B. Knobler,
A. Louati and E. M. Sanford, Angew. Chem. Int., Ed. Engl., 1994,
33, 1739; (b) J. P. Collman, L. Fu, A. Zingg and F. Diederich, Chem.
Commun., 1997, 193.
6 (700 mg, 0.942 mmol) and
Zn(OAc) Ω2H O (228 mg, 1.043 mmol) were dissolved in meth-
2
2
anol (20 ml). The solution was heated to reflux for 4 h, then
distilled water (60 ml) was added, and the methanol was
evaporated under vacuum. The turbid solution was placed in
the refrigerator overnight, and the purple crystalline product
was filtered and dried in vacuo at 40 °C; yield: 99%; UV–VIS,
l/nm (e): 428 (523 000), 560 (20 000), 600 (7000).
d
H
([2H ]DMSO, 2.49 ppm) 9.60 (s, 8 H, Ar-OH), 8.86 (s, 8 H, b-
6
H), 7.01 (d, 8 H, Ar-H), 6.62 (t, 4 H, Ar-H). d ([2H DMSO,
C
6
39.5 ppm) 156.21 (ArC-OH); 148.93 (a C); 144.46 (ArC-porph);
131.33 (b C); 120.23 (meso C); 114.16, 101.72 (ArC-H). Mass
spectrum (MALDI-TOF): m/z, calc. 806; found 814.
4
5
Tetrakis(3,5-dimethoxyphenyl)porphyrin 5. 3,5-dimethoxy-
benzaldehyde (1.500 g, 9.026 mmol) and freshly distilled pyr-
role (626 ml, 9.026 mmol) were dissolved in dry chloroform
(903 ml) under nitrogen atmosphere. After adding BF ΩOEt
3
2
(364 ml, 2.979 mmol) to the mixture, the solution was shielded
from ambient light and stirred at room temperature for 90 min.
After adding DDQ (1.537 g, 6.770 mmol), the mixture was
stirred for an additional 90 min, then triethylamine (415 ml,
2.979 mmol) was added to neutralize the acid. The solvent was
evaporated, and the residual solids were adsorbed onto silica
(20 ml). The crude product was purified by chromatography
through a 40 ml silica column eluting with a linear gradient of
solvent from pure hexane to pure CH Cl . After collecting the
6
7
8
2
2
product fractions and evaporating the solvent, the product
was obtained as purple crystals; yield: 52%; UV–VIS, l/nm (e)
424 (280 000), 516 (19 000), 548 (9000), 586 (9000), 648 (5000).
(a) R. Jin, T. Aida and S. Inoue, J. Chem. Soc., Chem. Commun.,
1993, 1260; (b) D. Jiang, R. Jin and T. Aida, Chem. Commun., 1996,
1523; (c) Y. Tomoyose, D. Jiang, R. Jin, T. Aida, T. Yamashita,
K. Horie, E. Yashima and Y. Okamoto, Macromolecules, 1996,
29, 5236.
d
([2H DMSO, 2.49 ppm) 8.95 (s, 8 H, b-H), 7.01 (s, 8 H, Ar-
H
6
H), 6.65 (s, 4 H, Ar-H), 3.33 (s, 24 H, ArO-CH ), −3.07 (s, 2
H, N-H); d ([2H DMSO, 39.5 ppm) 156.60 (ArC-OCH );
142.89 (ArC-porph); 131.12 (b C); 119.94 (meso C); 114.19,
3
C
6
3
102.28 (ArC-H); 48.64 (Ar-OCH ) (Calc. for C H N O ; C
73.05, H 5.42, N 6.55; found C 73.11, H 5.29, N 6.43%).
9
K. W. Pollak, J. W. Leon and J. M. J. Fre´chet, Polym. Mater. Sci.
Eng., 1995, 73, 137; K. W. Pollak, J. W. Leon and J. M. J. Fre´chet,
Chem. Mater., in the press.
3
52 46 4 8
10 P. Bhyrappa, J. K. Young, J. S. Moore and K. S. Suslick, J. Am.
Chem. Soc., 1996, 118, 5708.
11 C. J. Hawker and J. M. J. Fre´chet, J. Am. Chem. Soc., 1990, 112,
7638.
12 J. Lindsey, I. Scheirman, H. Hsu, P. Kearney and A. Marguerettaz,
J. Org. Chem., 1987, 52, 827.
13 R. J. Abraham, G. E. Hawkes, M. F. Hudson and K. M. Smith,
J. Chem. Soc., Perkin T rans. 2, 1975, 204.
Tetrakis(3,5-dihydroxyphenyl)porphyrin 6. Tetrakis(3,5-
dimethoxyphenyl)porphyrin 5 (740 mg, 0.866 mmol) was dis-
solved in dry CH Cl (20 ml) under nitrogen atmosphere. The
2
2
solution was cooled to 0 °C, then BBr (7.27 ml, 7.271 mmol,
1 in CH Cl ) was slowly added to the reaction. After
3
2
2
addition, the mixture was allowed to warm to room temp. as
it stirred overnight. Enough methanol was then added to
deactivate any unreacted BBr , distilled water (30 ml) was
added, and the mixture was stirred for 2 h. After evaporation
of the organic solvents, a green powder was filtered from the
water. It was dissolved in diethyl ether, washed twice with
14 (a) D. Dolphin, ‘T he Porphyrins vol. III’, Academic Press, NY 1978,
pp. 12–16; (b) J. E. Falk, ‘Porphyrins and Metalloporphyrins’,
Elsevier Publishing Company, NY, 1964, vol. 75–76, pp. 243–246.
3
Paper 7/05410F; Received 28th July, 1997
J. Mater. Chem., 1998, 8(3), 519–527
527