intramolecular [3 þ 2] cycloaddition reaction of an aryl
cyclopropyl ketone with an alkyne for the stereoselective
construction of the functionalized pyrrolidine ring.
utilized “donorꢀacceptor” cyclopropanes,10 or methylene
cyclopropanes.11 Moreover, cyclopropyl ketyl radicals
have most commonly been exploited for their propensity
to undergo reductive fragmentations12 and have not been
examined as intermediates in [3 þ 2] cycloaddition reac-
tions except for a few intermolecular examples catalyzed
by Ni0 complexes13 and particularly scarce intramolecular
examples catalyzed by Ru(bpy)3 with visible light.14
Scheme 1. Synthetic Strategy for (ꢀ)-R-Kainic Acid (1)
Scheme 2. Synthesis of Precursor 4
Our synthetic strategy is outlined in Scheme 1. We
planned to introduce the isopropylidene fragment through
an olefination of the ketone 2. This disconnection would
also enable easy access to domoic acid as well, through use
of a different olefination reagent. Ketone intermediate 2
could be formed by oxidative cleavage of the bicyclic
compound 3 which could beobtained by anintramolecular
radical [3 þ 2] cycloaddition of aryl cyclopropyl ketones 4,
installing the cis C3ꢀC4 side chains of kainic acid, with the
trans C2ꢀC3 relationship induced by a bulky TBS ether.
The cyclization substrate 4 could be derived from commer-
cially available D-serine methyl ester hydrochloride 5.
It was obvious that success of the plan would primarily
hinge on whether the intramolecular radical [3 þ 2]
cycloaddition of aryl cyclopropyl ketones 4 could proceed
satisfactorily with good diasteroselectivity. It was feared,
however, and with some foundation, that most [3 þ 2]
cycloadditions of cyclopropanes reported to date have
D-Serine methyl ester hydrochloride 5 was converted in
87% yield into N-tosyl methyl ester derivative 6,15 which
was reduced with DIBAL-H to the corresponding alde-
hyde. A Wittig olefination16 provided the enone 7 in 94%
yield (two steps from 6) (Scheme 2). Cyclopropanation of 7
with Me3SOI followed by N-alkylation with 1-bromo-2-
butyne delivered the key precursor 4 as a 1.2:1 mixture of
diastereomers in 79% yield over two steps.
With the precursor 4 in hand, we then investigated the
key annulation reaction (Table 1). We began our investi-
gation by opening cyclopropanes with [Ni(cod)2] and a
variety of Lewis acids (entries 1ꢀ4).13 Unfortunately, we
(10) For recent reviews of donorꢀacceptor cyclopropane chemistry,
see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (b) Yu,
M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321. (c) Campbell, M. J.;
Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org.
Chem. 2010, 75, 6317. For some selected examples: (d) Yadav, V. K.;
Sriramurthy, V. Angew. Chem., Int. Ed. 2004, 43, 2669. (e) de Nanteuil,
F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075. (f) Benfatti, F.; de
Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386. (g) Benfatti, F.; de
Nanteuil, F.; Waser, J. Chem.;Eur. J. 2012, 18, 4844.
(11) For recent reviews of methylene cyclopropane chemistry, see: (a)
Binger, P.; Buch, H. M. Top. Curr. Chem. 1987, 135, 77. (b) Brandi, A.;
Goti, A. Chem. Rev. 1998, 98, 589. (c) Brandi, A.; Cicchi, S.; Cordero,
F. M.; Goti, A. Chem. Rev. 2003, 103, 1213.
(12) (a) Kirschberg, T.; Mattay, J. J. Org. Chem. 1996, 61, 8885. (b)
Enholm, E. J.; Jia, Z. J. Chem. Commun. 1996, 1567. (c) Enholm, E. J.;
Jia, Z. J. J. Org. Chem. 1997, 62, 174. (d) Fagnoni, M.; Schmoldt, P.;
Kirschberg, T.; Mattay, J. Tetrahedron 1998, 54, 6427. (e) Tzvetkov,
N. T.; Neumann, B.; Stammler, H.-G.; Mattay, J. Eur. J. Org. Chem.
2006, 351. For some selected examples of SmI2-mediated cleavage of
cyclopropyl ketones: (f) Molander, G. A.; McKie, J. A. J. Org. Chem.
1991, 56, 4112. (g) Aulenta, F.; Holemann, A.; Reissig, H.-U. Eur. J.
Org. Chem. 2006, 1733. (h) Batey, R. A.; Motherwell, W. B. Tetrahedron
Lett. 1991, 32, 6211. (i) Molander, G. A.; Alonso-Alija, C. Tetrahedron
1997, 53, 8067.
(13) (a) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348.
(b) Ogoshi, S.; Nagata, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128,
5350. (c) Liu, L.; Montgomery, J. Org. Lett. 2007, 9, 3885. (d) Tamaki,
T.; Nagata, M.; Ohashi, M.; Ogoshi, S. Chem.;Eur. J. 2009, 15, 10083.
(e) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50,
12067.
(9) For recent formal and total syntheses of (þ)- and (ꢀ)-R-kainic
acid, see: (a) Oppolzer, W.; Thirring, K. J. Am. Chem. Soc. 1982, 104,
4978. (b) Takano, S.; Sugihara, T.; Satoh, S.; Ogasawara, K. J. Am.
Chem. Soc. 1988, 110, 6467. (c) Chevliakov, M. V.; Montgomery, J.
J. Am. Chem. Soc. 1999, 121, 11139. (d) Campbell, A. D.; Raynham, T. M.;
Taylor, R. J. K. J. Chem. Soc., Perkin Trans. 1 2000, 3194. (e) Xia, Q.;
Ganem, B. Org. Lett. 2001, 3, 485. (f) Martinez, M. M.; Hoppe, D. Org.
Lett. 2004, 6, 3743. (g) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005,
127, 4763. (h) Anderson, J. C.; O’Loughlin, J. M. A.; Tornos, J. A. Org.
Biomol. Chem. 2005, 3, 2741. (i) Hodgson, D. M.; Hachisu, S.; Andrews,
M. D. Org. Lett. 2005, 7, 815. (j) Scott, M. E.; Lautens, M. Org. Lett. 2005,
7, 3045. (k) Pandey, S. K.; Orellana, A.; Greene, A. E.; Poisson, J.-F. Org.
Lett. 2006, 8, 5665. (l)Jung, Y. C.;Yoon, C. H.;Turos, E.;Yoo, S. K.;Jung,
K. W. J. Org. Chem. 2007, 72, 10114. (m) Tomooka, K.; Akiyama, T.; Man,
P.; Suzuki, M. Tetrahedron Lett. 2008, 49, 6327. (n) Majik, M. S.;
Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 3591. (o) Farwick, A.
Helmchen, G. Org. Lett. 2010, 12, 1108. (p) Kitamoto, K.; Sampei, M.;
Nakayama, Y.; Sato, T.; Chida, N. Org. Lett. 2010, 12, 5756. (q)
ꢀ
Lemiere, G.; Sedehizadeh, S.; Toueg, J.; Fleary-Roberts, N.; Clayden,
J. Chem. Commun. 2011, 47, 3745. (r) Takita, S.; Yokoshima, S.;
Fukuyama, T. Org. Lett. 2011, 13, 2068. (s) Kamon, T.; Irifune, Y.;
Tanaka, T.; Yoshimitsu, T. Org. Lett. 2011, 13, 2674. (t) Lowe, M. A.;
Ostovar, M.; Ferrini, S.; Chen, C. C.; Lawrence, P. G.; Fontana, F.;
Calabrese, A. A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2011, 50, 6370.
(u) Wei, G.; Chalker, J. M.; Cohen, T. J. Org. Chem. 2011, 76, 7912. (v)
Parsons, P. J.; Rushton, S. P. G.; Panta, R. R.; Murray, A. J.; Coles,
M. P.; Lai, J. Tetrahedron 2011, 67, 10267. (w) Evans, P. A.; Inglesby,
P. A. J. Am. Chem. Soc. 2012, 134, 3635.
(14) Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 1162.
(15) Fujii, N.; Nakai, K.; Habashita, H.; Hotta, Y.; Tamamura, H.;
Otaka, A.; Ibuka, T. Chem. Pharm. Bull. 1994, 42, 2241.
(16) Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198.
Org. Lett., Vol. 14, No. 10, 2012
2541