ORGANIC
LETTERS
2002
Vol. 4, No. 21
3651-3654
A Concise, Asymmetric Synthesis of
Tetramic Acid Derivatives
Santos Fustero,* Marta Garc´ıa de la Torre,§ Juan F. Sanz-Cervera,
Carmen Ram´ırez de Arellano,‡ Julio Piera, and Antonio Simo´n
Departamento de Qu´ımica Orga´nica, UniVersidad de Valencia,
E-46100 Burjassot, Spain
santos.fustero@uV.es
Received July 24, 2002
ABSTRACT
A simple, asymmetric synthesis of tetramic acid derivatives is described in this paper. The key step is a carbonyl transfer from carbonyldiimidazole
(CDI) to r-diimines (I) to form N-alkyl-4-alkylamino-5-methylenepyrrol-2-ones (II). In turn, these compounds can be easily transformed into
tetramic acid derivatives (III) in two additional steps.
CDI has been widely used in organic synthesis as a transfer
reagent of both the imidazole ring and the carbonyl group.1
One of the most frequent applications of CDI is as carbo-
nylating agent in processes that imply formation of two
carbon-heteroatom bonds.2 In contrast, CDI has been used
much less frequently in the formation of one or two carbon-
carbon bonds. To the best of our knowledge, only four
examples have been reported related to such processes.3 In
the most recent case,3d our research group was able to prepare
â-enamino esters and thioesters through the reaction of
ketimines with CDI, followed by reaction with an alkoxide.
In this paper, we are reporting a novel carbonyl transfer from
CDI to R-diimines that constitutes the key step for a synthesis
of tetramic acid derivatives.
A number of natural products with a wide range of
biological activities, which include antiviral, antitumoral,
antibiotic, and antimicrobial activities, include the core
structure of tetramic acid (1, pyrrolidin-2,4-dione). Some
examples of these substances are tirandamycine (2), disidine
(3), and magnesidine (4).4
Natural products that derive from tetramic acid and include
an acyl group on C-3 are called 3-acyltetramic acids. Their
biological activity is essentially due to the presence of the
pyrrolidin-2,4-dione ring, the carbonyl group on C-3, and
the stereocenter on C-5, together with the ability to form
complexes with metallic ions.5
§ Current address: Eli Lilly & Co., Alcobendas, Madrid, Spain.
‡ X-ray analysis.
(1) (a) Staab, H. A. Liebigs Ann. Chem. 1957, 609, 75-83. (b) Staab,
H. A. Angew. Chem. 1962, 74, 407-423; Angew. Chem., Int. Ed. Engl.
1962, 1, 351-367. (c) Paul, R.; Anderson, G. W. J. Am. Chem. Soc. 1960,
82, 4596-4600. (d) Kno¨lker, H. J.; El-Ahl, A. A. Heterocycles 1993, 36,
1381-1385. (e) Brooks, D. W.; Lu, L. D.-L.; Masamune, S. Angew. Chem.,
Int. Ed. Engl. 1979, 18, 72-74. (f) Armstrong, A. In Encyclopedia of
Reagents for Organic Synthesis; Paquete, L. A., Ed.; Wiley & Sons: New
York, 1995; Vol. 4, p 1006.
(2) (a) Buntain, I. G.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc.,
Perkin Trans. 1 1988, 3175-3182. (b) Staab, H. A.; Benz, W. Liebigs Ann.
Chem. 1961, 648, 72-82. (c) Walsh, D. A.; Green, J. B.; Franzyschen, S.
K.; Nolan, J. C.; Janni, J. M. J. Med. Chem. 1990, 33, 2028-2032. (d)
Zhang, X.; Rodrigues, J.; Evans, L.; Hinkle, B.; Ballantyne, L.; Pen˜a, M.
J. Org. Chem. 1997, 62, 6420-6423.
(3) (a) Jerris, P. J.; Wovkulich, P. M.; Smith, A. B., III Tetrahedron
Lett. 1979, 20, 4517-4520. (b) Garigpati, R. S.; Tschaen, D. M.; Weinreb,
S. M. J. Am. Chem. Soc. 1990, 112, 3475-3482. (c) Barluenga, J.; Gonza´lez,
F.; Fustero, S.; Pe´rez, R. J. Org. Chem. 1991, 56, 6751-6754. (d) Fustero,
S.; Garc´ıa de la Torre, M.; Jofre´, V.; Pe´rez Carlo´n, R.; Navarro, A.; Simo´n
Fuentes, A. J. Org. Chem. 1998, 63, 8825-8836.
(4) For a review on tetramic acid derivatives, see: Royles, B. J. L. Chem.
ReV. 1995, 95, 1981-2001.
(5) (a) Markopolou, O.; Markopoulos, J.; Nicholls, D. J. Inorg. Biochem.
1990, 39, 307-316. (b) Heaton, B. T.; Jacob, C.; Markopoulos, J.;
Markopoulou, O.; Na¨hring, J.; Skylaris, C.-K.; Smith, A. K. J. Chem. Soc.,
Dalton Trans. 1996, 1701-1706.
10.1021/ol026599k CCC: $22.00 © 2002 American Chemical Society
Published on Web 09/19/2002