Polyethylene Glycol Mediated One-Pot Three-Component Synthesis of New 4-Thiazolidinones 169
Compound 4h. 1H NMR (400 MHz, CHCl3,
δ ppm): 2.42 (d, 3H, J = 8.23 Hz), 3.77 (d, 1H,
J = 10.2 Hz), 3.94 (d, 1H, J = 10.2 Hz), 6.4 (s, 1H,
methine), 6.87 (d, 2H, J = 7.8 Hz), 7.24–7.36 (m, 4H),
7.61 (d, 2H, J = 7.2 Hz), 7.68 (d, 2H, J = 7.9 Hz),
8.02 (d, 1H, J = 7.8 Hz), and 8.18 (d, 1H, J = 7.8
Hz). MS (m/z): 427 (M+).
light. 4-(p-Toulylsulfonoxy) benzaldehyde (1) was
synthesized by using the procedure discussed in the
literature[29].
General Procedure for the Synthesis of
4-[3-(Substituted)-4-oxothiazolidin-2-yl]
phenyl-4-methyl Benzene Sulfonates(4a–j)
Compound 4i. 1H NMR (400 MHz, CDCl3,
δ ppm): 2.26 (s, 6H), 3.80 (d, 1H, J = 10.0 Hz), 4.04
(d, 1H, J = 10.0 Hz), 5.91 (s, 1H), 6.80 (s, 1H, me-
thine), 7.08 (d, 2H, J = 8.5 Hz), 7.22 (d, 2H, J = 8.5
Hz), 7.25 (m, 6H), and 7.61 (d, 2H, J = 7.9 Hz). MS
(m/z): 522 (M+).
A mixture of 4-(p-toulylsulfonoxy) benzaldehyde (1)
(2 mmol), aryl/heteryl amines (2a–j) (2 mmol), and
mercaptoacetic acid (3) (2–3 mmol) in PEG-400
(1 mL) was stirred at 50◦C. The progress of the re-
action was monitored by TLC using ethyl acetate:
hexane (3:7) as solvent. After 2 h of stirring, the re-
action mass was poured onto cold water, washed
with NaHCO3, and extracted with ethyl acetate
(2 × 50 mL). Ethyl acetate was removed under
reduced pressure, and the obtained crude prod-
ucts were crystallized from ethanol. The physical
characterization of compounds 4a–j is presented in
Table 2, and their synthesis route is shown in
Scheme 1.
Compound 4j. 1H NMR (400 MHz, CDCl3,
δ ppm): 2.35 (s, 3H), 3.77 (d, 1H, J = 10.1 Hz), 4.01
(d, 1H, J = 10.1 Hz), 5.74 (s, 1H,), 6.45 (s, 1H, me-
thine), 6.89 (d, 2H, J = 7.2 Hz), 7.14 (d, 2H, J =
7.9 Hz), 7.19 (m, 6H), and 7.60 (d, 2H, J = 7.9 Hz).
MS (m/z): 543 (M+).
ACKNOWLEDGMENT
Spectral Data of a Few Representative
Thiazolidin-4-ones
The authors are thankful to Professor D. B. Ingle for
his invaluable discussion and guidance.
Compound 1. 1H NMR (400 MHz, CDCl3,
δ ppm): 2.45 (s, 3H), 7.18 (d, 2H, J = 7.89 Hz), 7.33
(d, 2H, J = 7.89 Hz), 7.82(d, 2H, J = 7.88 Hz), 7.84
(d, 2H, J = 7.89 Hz), and 9.96 (s, 1H). MS (m/z): 276
(M+).
REFERENCES
[1] Verma, A.; Saraf, S. Eur J Med Chem 2008, 43, 897–
905.
[2] Capan, G.; Ulusoy, N.; Kiraz, M. Monatsh Chem 1999,
130, 1399–1407.
Compound 4a. 1H NMR (400 MHz, CDCl3,
δ ppm): 2.45 (s, 3H), 3.87 (d, 1H, J = 9.6 Hz), 3.97
(d, 1H, J = 10.0 Hz), 6.02 (s, 1H, methine), 6.9 (d,
2H, J = 7.2 Hz), 7.1 (d, 2H, J = 7.1 Hz), 7.3 (m, 6H),
and 7.6 (d, 2H, J = 7.1 Hz). MS (m/z): 450 (M+).
[3] (a) Barreca, M. L.; Balzsarini, J.; Chimirri, A.; De
Clercq, E.; De Luca, L.; Holtje, H. D.; Ho¨ltje, M.;
Monforte, A. M.; Monforte, P.; Pannecouque, C.; Rao,
A.; Zapalla, M. J Med Chem 2002, 45, 5410–5413;
(b) Rawal, R. K.; Tripathi, R.; Katti, S. B.; Pan-
necouque, C.; De Clercq, E. Bioorg Med Chem 2007,
15, 3134–3142.
[4] Hongyu, Z.; Wu, S.; Zhai, S.; Liu, A.; Sun, Y.; Li,
R.; Zhang, Y.; Ekins, S.; Swaan, P. W.; Fang, B.;
Zhangand, B.; Yan, B. J Med Chem 2008, 51, 3134–
3142.
[5] Solomon, V. R.; Haq, W.; Srivastava, K.; Puri, S. K.;
Katti, S. B. J Med Chem 2007, 50, 394–398.
[6] Kucukguzel, G. C.; Shchullek, J. R.; Kaocatepe, A.; De
Clercq, E.; Sahinv, F.; Gulluce, M. Eur. J Med Chem
2006, 41, 353–359.
[7] Archana; Srivastava, V. K.; Kumar, A. Eur J Med
Chem 2002, 37, 873–882.
Compound 4b. 1H NMR (400 MHz, CDCl3,
δ ppm): 2.44 (s, 3H), 3.79(d, 1H, J = 10.1 Hz), 3.92(d,
1H, J = 10.1 Hz), 6.05 (s, 1H, methine), 6.90 (d, 2H,
J = 7.9 Hz), 7.09 (d, 2H, J = 7.9 Hz), 7.12 (d, 2H,
J = 7.5 Hz), 7.23–7.52 (m, 5H), and 7.6 (d, 2H, J =
7.7 Hz). MS (m/z): 412 (M+).
Compound 4f. 1H NMR (400 MHz, CDCl3,
δ ppm): 1.37 (t, 3H), 2.44 (s, 3H), 3.88–3.90 (d, 2H,
–CH2–S–, overlapped, J = 9.9 Hz), 3.96 (q, 2H, J =
7.9 Hz), 5.94 (s, 1H, methine), 6.77 (d, 2H, J = 7.9
Hz), 6.90 (d, 2H, J = 7.8 Hz), 7.20 (d, 2H, J = 7.7
Hz), 7.22 (d, 2H, J = 7.7 Hz), 7.27 (d, 2H, J = 7.8
Hz), and 7.58 (d, 2H, J = 7.8 Hz). MS (m/z): 460
(M+).
[8] Desai, K. G.; Desai, K. R. J Sulfur Chem 2006, 27,
315–328.
[9] Jackson, C. M.; Blass, B.; Coburn, K.; Djandjighian,
L.; Fadayel, G.; Fluxe, A. J.; Hodson, S. J.; Janusz,
J. M.; Murawsky, M.; Ridgeway, J. M.; White, R. E.;
Wu, S. Bioorg Med Chem Lett 2007, 17, 282–284.
[10] Boyd, A. E. Diabetes 1988, 37, 847.
Heteroatom Chemistry DOI 10.1002/hc