ORGANIC
LETTERS
2012
Vol. 14, No. 12
2972–2975
Enantioselective DielsꢀAlder Reaction
of r-(Acylthio)acroleins: A New Entry
to Sulfur-Containing Chiral Quaternary
Carbons
Akira Sakakura,† Hiroki Yamada,‡ and Kazuaki Ishihara*,‡,§
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603,
Japan, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya
464-8603, Japan, and JST, CREST, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Received April 10, 2012
ABSTRACT
A catalytic and enantioselective DielsꢀAlder reaction of R-(carbamoylthio)acroleins induced by an organoammonium salt of chiral triamine is
described. R-(Carbamoylthio)acroleins are designed and synthesized as new sulfur-containing dienophiles for the first time. The DielsꢀAlder
reaction affords chiral tertiary thiol precursors with up to 91% ee.
The DielsꢀAlder reaction is one of the most powerful
carbonꢀcarbonbond-formingreactionsandiswidelyused
for the synthesis of various bioactive natural compounds.1
We previously reported the catalytic enantioselective
DielsꢀAlder reaction and [2 þ 2] cycloaddition reac-
tion of R-(acyloxy)acroleins and R-(phthalimido)acroleins
induced by organoammonium salts of chiral triamine 1 with
C6F5SO3H or Tf2NH (Scheme 1).2 R-(Acyloxy)acroleins
and R-(phthalimido)acroleins are useful dienophiles for
the synthesis of chiral R-quaternary R-hydroxy or R-amino
acid equivalents. In this context, R-(acylthio)acroleins
would also be useful dienophiles for the construction of
sulfur-containing quaternary carbons. The corresponding
adducts are potential chiral intermediates for the synthesis
of sulfur-containing bioactive natural products.3 For ex-
ample, the DielsꢀAlder adduct of an R-(acylthio)acrolein
† EcoTopia Science Institute.
(3) For representative examples of bioactive compounds bearing
sulfur-containing quaternary carbons, see: (a) Hofmeister, H.; Hoyer,
G.-A.; Cleve, G.; Laurent, H.; Wiechert, R. Chem. Ber. 1976, 109, 185.
(b) Costa, M. d. C.; Teixeira, S. G.; Rodrigues, C. B.; Ryberg Figueiredo, P.;
Marcelo Curto, M. J. Tetrahedron 2005, 61, 4403. (c) Asthana, R. K.;
Srivastava, A.; Singh, A. P.; Deepali; Singh, S. P.; Nath, G.; Srivastava, R.;
Srivastave, B. S. J. Appl. Phycol. 2006, 18, 33. (d) Sawant, S.; Youssef, D.;
Mayer, A.; Sylvester, P.; Wali, V.; Arant, M.; El Sayed, K. A. Chem. Pharm.
‡ Graduate School of Engineering.
§ CREST.
(1) (a) Ishihara, K.; Sakakura, A. In Stereoselective Synthesis; Evans,
P. A., Ed.; Georg Thieme Verlag KG: Stuttgart, 2011; Vol. 3, pp 67ꢀ123.
(b) Corey, E. J. Angew. Chem., Int. Ed. 2009, 48, 2100. (c) Nicolaou,
K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew.
Chem., Int. Ed. 2002, 41, 1668. (d) Oppolzer, W. In Comprehensive
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 5, pp 315ꢀ399.
€
Bull. 2006, 54, 1119. (e) Dormann, K. L.; Bruckner, R. Angew. Chem., Int.
Ed. 2007, 46, 1160.
(4) Pattenden, G.; Shuker, A. J. Tetrahedron Lett. 1991, 32, 6625.
(5) (a) Aggarwal, V. K.; Jones, D. E.; Martin-Castro, A. M. Eur. J.
Org. Chem. 2000, 2939. (b) Sobhani, S.; Fielenbach, D.; Marigo, M.;
Wabnitz, T. C.; Jørgensen, K. A. Chem.;Eur. J. 2005, 11, 5689.
(c) Jereb, M.; Togni, A. Org. Lett. 2005, 7, 4041. (d) Lu, H.; Zhang, F.;
Meng, X.; Duan, S.; Xiao, W. Org. Lett. 2009, 11, 3946. (e) Fujiwara, Y.;
Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293.
(2) (a) Ishihara, K.; Nakano, K. J. Am. Chem. Soc. 2005, 127,
10504; correction 2005, 127, 13079. (b) Sakakura, A.; Suzuki, K.;
Nakano, K.; Ishihara, K. Org. Lett. 2006, 8, 2229. (c) Sakakura, A.;
Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457. (d) Ishihara,
K.; Nakano, K. J. Am. Chem. Soc. 2007, 129, 8930. (e) Ishihara, K.;
Nakano, K.; Akakura, M. Org. Lett. 2008, 10, 2893. (f) Sakakura, A.;
Ishihara, K. Bull. Chem. Soc. Jpn. 2010, 83, 313.
r
10.1021/ol300921f
Published on Web 05/25/2012
2012 American Chemical Society