C
H. Yamagishi et al.
Letter
Synlett
1,2-diphenylethene (6) selectively in 44% yield. Notably, the
overall transformation represents a rare intermolecular
anti-disilylation of an alkyne.9 The reaction with other elec-
trophiles such as BuCl or ClCH2OMe did not provide a dou-
bly alkylated product, probably due to the bulkiness of the
metalated species 5.
In conclusion, we have developed the first twofold silyl-
metalation across a C≡C triple bond. The reaction is con-
ducted in the presence of a copper cyanide catalyst and a
silylpotassium species generated from a disilane and t-
BuOK. Protonation of the 1,2-dimetalated species provided
a series of 1,2-disilyl-1,2-diarylethanes. Further applica-
tions of the cuprate species and a detailed mechanistic
study will be reported in due course.
PhMe2Si
D
SiMe2Ph
D
R
D2O
1
0 to 25 °C
1 h
R = OMe
Funding Information
PhMe2Si SiMe2Ph
(3.0 equiv)
2
4
OMe
CuCN (20 mol%)
t-BuOK (3.2 equiv)
DME, 25 °C, 1.5 h
85%
(dr 1:2.2, 91%D)
This work was supported by JSPS KAKENHI Grant Numbers
JP15H05641,
JP16H04109,
JP18H04254,
JP18H04409,
and
JP19H00895. H.Y. thanks The Asahi Glass Foundation for financial
support.
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
5
H
0
5
6
4
1)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
5
H
0
5
6
4
1)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
8
H
0
4
2
5
4)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
8
H
0
4
4
0
9)
PhMe2Si
K
SiMe2Ph
K
SiMe2Ph
Supporting Information
I
2 (4.0 equiv)
PhMe2Si
44%
0 to 25 °C
1 h
R = H
Supporting information for this article is available online at
5
R
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
6
Scheme 2 Derivatization of twofold silylmetalated species
References and Notes
(1) (a) Handbook of Reagents for Organic Synthesis: Reagents for
Silicon-Mediated Organic Synthesis; Fuchs, P. L., Ed.; Wiley:
Chichester, 2011. (b) Chemistry of Organosilicon Compounds,
Vol. 3; Rappoport, Z.; Apeloig, Y., Ed.; Wiley-VCH: New York,
2001. (c) Colvin, E. W. Silicon Reagents in Organic Synthesis 1988.
(2) (a) Silicon Polymers; Muzafarov, A. M., Ed.; Springer: Heidelberg,
2011. (b) Silicon-Containing Polymers: The Science and Technol-
ogy of Their Synthesis and Applications; Jones, R. G.; Ando, W.;
Chojnowski, J., Ed.; Kluwer Academic: Dordrecht, 2000.
(3) (a) Fleming, I.; Roessler, F. J. Chem. Soc., Chem. Commun. 1980,
276. (b) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc.,
Perkin Trans. 1 1981, 2527. (c) Hayami, H.; Sato, M.; Kanemoto,
S.; Morizawa, Y.; Oshima, K.; Nozaki, H. J. Am. Chem. Soc. 1983,
105, 4491. (d) Okuda, Y.; Morizawa, Y.; Oshima, K.; Nozaki, H.
Tetrahedron Lett. 1984, 25, 2483. (e) Okuda, Y.; Wakamatsu, K.;
Tückmantel, W.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985,
26, 4629. (f) Wakamatsu, K.; Nonaka, T.; Okuda, Y.; Tückmantel,
W.; Oshima, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1986, 42,
4427. (g) Cuadrado, P.; González-Nogal, A. M.; Sánchez, A. J. Org.
Chem. 2001, 66, 1961. (h) Liepins, V.; Karlström, A. S.; Bäckvall,
J.-E. J. Org. Chem. 2002, 67, 2136. (i) Barbero, A.; Pulido, F. J. Acc.
Chem. Res. 2004, 37, 817. (j) Auer, G.; Oestreich, M. Chem.
Commun. 2006, 311. (k) Wang, P.; Yeo, X.-L.; Loh, T.-P. J. Am.
Chem. Soc. 2011, 133, 1254. (l) Fujihara, T.; Tani, Y.; Semba, K.;
Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2012, 51, 11487.
(m) Hazra, C. K.; Fopp, C.; Oestreich, M. Chem. Asian J. 2014, 9,
3005. (n) García-Rubia, A.; Romero-Revilla, J. A.; Mauleón, P.;
Gómez Arrayás, R.; Carretero, J. C. J. Am. Chem. Soc. 2015, 137,
6857. (o) Shintani, R.; Kurata, H.; Nozaki, K. J. Org. Chem. 2016,
81, 3065.
The plausible reaction mechanism shown in Figure 3
was accordingly proposed. Copper cyanide reacts with two
equivalents of the silylpotassium species generated in situ
from disilane and t-BuOK.6,10 The resulting copper–ate com-
plex 7 should be susceptible to silylcupration with the dia-
rylacetylene to form adduct 8.11 The remaining silyl group
on the copper atom migrates to the adjacent carbon to give
carbanion 9. With the aid of two equivalents of the silylpo-
tassium species, the copper atom in 9 is replaced with po-
tassium to afford 1,2-dimetalated species 5. The copper–ate
species 7 is concomitantly regenerated to close the catalytic
cycle. The efficient double silylmetalation might be as-
cribed to smooth 1,2-silyl migration from 8 with the aid of
potassium as the countercation.12
+
CuCN
2Si-K
Si
Si
Ar
Ar
K
K
1
Ar
Ar
5
Si2Cu(CN)K2
7
2
Si–K
1,2-addition
Cu
Ar
(CN)K2
Si
Si
Cu(CN)K
Ar
Si
K
Si
Ar
9
8
Ar
1,2-migration
(4) The reduction in the isolated yield is due to the difficulty in
chromatographically separating the product from the t-BuO-
SiMe2Ph generated during the formation of the silyl potassium
species.
Figure 3 Proposed reaction mechanism
© 2019. Thieme. All rights reserved. — Synlett 2019, 30, A–D