stereocenters including, with an appropriately substituted
alkene, vicinal all-carbon quaternary stereocenters.
malonate (E)-6a9 to manganese(III) acetate and copper(II)
triflate10 in acetonitrile (0.1 M) at 80 °C gave rise to the
desired [3.3.0]-bicyclic γ-lactone 7a in 79% yield and 2:1 dr
at the lactone stereocenter (Table 1, entry 1).11 Variation of
the concentration (Table 1, entries 1À6) gave rise to large
changes in both dr and isolated yields, with the optimum
concentration being 0.4 M. Loweringthe temperature gave
an increase in dr, but with a concomitant decrease in yield
(Table 1, entries 7 and 8).
Scheme 1. Proposed Mechanism for Oxidative Radical Cycli-
zation
Table 1. Optimization of the Oxidative Radical Cyclization
Reaction with Malonate 7aa
We began our investigations with the cyclization of the
1,2-disubstituted alkene substrate (E)-6a (Table 1) before
moving to the more challenging trisubstituted and fully
substituted alkene substrates (vide infra). Exposure of the
entry
temp (°C)
concn (M)
yield (%)b
drc
1
2
3
4
5
6
7
8
80
80
80
80
80
80
60
40
0.1
0.2
0.4
0.6
0.8
1.0
0.4
0.4
79
71
84
67
62
55
70
74
2.8:1
3.4:1
4.1:1
5.7:1
5.2:1
3.8:1
6.0:1
7.4:1
(3) For recent selected examples of the one-pot formation of vicinal all
carbon quaternary stereocenters by the following methods, see: Thermal
pericyclic: (a) Lemieux, R. M.; Meyers, A. I. J. Am. Chem. Soc. 1998, 120,
€
5453–5457. (b) Nicolaou, K. C.; Vassilikogiannakis, G.; Magerlein, W.;
Kranich, R. Angew. Chem., Int. Ed. 2001, 40, 2482–2486. (c) Birman, V. B.;
Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124, 2080–2081. (d) Denmark,
S. E.; Baiazitov, R. Y. Org. Lett. 2005, 7, 5617–5620. (e) George, J.;
Adlington, R. Synlett 2008, 2093–2096. (f) Wu, H.; Xue, F.; Xiao, X.;
Qin, Y. J. Am. Chem. Soc. 2010, 132, 14052–14054. (g) Matsuta, Y.;
Kobari, T.; Kurashima, S.; Kumakura, Y.; Shinada, M.; Higuchi, K.;
Kawasaki, T. Tetrahedron Lett. 2011, 52, 6199–6202. Photochemical: (h)
Crimmins, M. T.; Pace, J. M.; Nantermet, P. G.; Kim-Meade, A. S.;
Thomas, J. B.; Watterson, S. H.; Wagman, A. S. J. Am. Chem. Soc. 1999,
121, 10249–10250. (i) Ng, D.; Yang, Z.; Garcia-Garibay, M. A. Org. Lett.
2004, 6, 645–647. (j) Mortko, C. J.; Garcia-Garibay, M. A. J. Am. Chem.
Soc. 2005, 127, 7994–7995. (k) Mehta, G.; Singh, S. R. Angew. Chem., Int.
Ed. 2006, 45, 953–955. (l) Inoue, M.; Sato, T.; Hirama, M. Angew. Chem.,
Int. Ed. 2006, 45, 4843–4848. (m) Shi, L.; Meyer, K.; Greaney, M. F. Angew.
Chem., Int. Ed. 2010, 49, 9250–9253. Alkylation: (n) Overman, L. E.;
Larrow, J. F.; Stearns, B. A.; Vance, J. M. Angew. Chem., Int. Ed. 2000, 39,
213–215. (o) Overman, L. E.; Peterson, E. A. Tetrahedron 2003, 59, 6905–
6919. (p) Fuchs, J. R.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 5068–5069.
(q) Clarke, P. A.; Black, R. J. G.; Blake, A. J. Tetrahedron Lett. 2006, 47,
1453–1455. (r) Feldman, K. S.; Nuriye, A. Y. Tetrahedron Lett. 2009, 50,
1914–1916. (s) Couladouros, E. A.; Dakanali, M.; Demadis, K. D.; Vidali,
V. P. Org. Lett. 2009, 11, 4430–4433. (t) Sladojevich, F.; Michaelides, I. N.;
Darses, B. D.; Ward, J. W.; Dixon, D. J. Org. Lett. 2011, 13, 5132–5135.
Transition metal catalyzed: (u) Overman, L. E.; Paone, D. V.; Stearns, B. A.
J. Am. Chem. Soc. 1999, 121, 7702–7703. (v) Chiba, S.; Kitamura, M.;
Narasaka, K. J. Am. Chem. Soc. 2006, 128, 6931–6937. (w) Yang, J.; Wu,
H.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794–13795. Oxidative:
(x) Ishikawa, H.; Takayama, H.; Aimi, N. Tetrahedron Lett. 2002, 43, 5637–
5639. (y) Snell, R. H.; Woodward, R. L.; Willis, M. C. Angew. Chem., Int.
Ed. 2011, 50, 9116–9119.
a All reactions were carried out with 2 equiv of Mn(OAc)3 2H2O and
3
1 equiv of Cu(OTf)2 in N2-sparged MeCN. b Isolated yield of mixture of
diastereomers. c dr was established from the crude 1H NMR; major
diastereomer shown.
Control reactions demonstrated that both manganese-
(III) acetate and copper(II) triflate were required for efficient
reaction.12 Furthermore, resubmission of diastereomerically
(6) (a) Davies, J. J.; Krulle, T. M.; Burton, J. W. Org. Lett. 2010,
12, 2738–2741. (b) Powell, L. H.; Docherty, P. H.; Hulcoop, D. G.;
Kemmitt, P. D.; Burton, J. W. Chem. Commun. 2008, 2559–2561.
(7) For reviews of manganese(III) acetate in organic synthesis, see:
(a) Snider, B. B. Chem. Rev. 1996, 96, 339–363. (b) Melikyan, G. G. Org.
React. 1997, 49, 427–675. (c) Demir, A. S.; Emrullahoglu, M. Curr. Org.
Synth. 2007, 4, 321–351. Burton, J. W. In Encyclopedia of Radicals in
Chemistry, Biology and Materials; Chatgilialoglu, C., Studer, A., Eds.; John
Wiley & Sons Ltd.: Chichester, U.K., 2012; pp 901À942.
(8) For a review of the mechanisms of manganese(III) acetate mediated
reactions, see: Snider, B. B. Tetrahedron 2009, 65, 10738–10744.
(9) For substrate synthesis see Supporting Information (SI).
(10) For the use of copper(II) triflate in conjunction with manganese-
(III) acetate, see: (a) Toyao, A.; Chikaoka, S.; Takeda, Y.; Tamura, O.;
Muraoka, O.; Tanabe, G.; Ishibashi, H. Tetrahedron Lett. 2001, 42,
1729–1732. (b) Hulcoop, D. G.; Burton, J. W. Chem. Commun. 2005,
4687–4689. (c) Hulcoop, D. G.; Sheldrake, H. M.; Burton, J. W. Org.
Biomol. Chem. 2004, 2, 965–967 and ref 6.
(4) For a recent example of the direct generation of vicinal all-carbon
quaternary centers by reaction of a Grignard reagent with an R-
chlorotosylhydrazone, see: Hatcher, J. M.; Coltart, D. M. J. Am. Chem.
Soc. 2010, 132, 4546–4547.
(11) The cyclization of the diethyl malonate analogue of 6a to give the
lactone corresponding to 7a has previously been reported under various
oxidative radical conditions: with manganese(III) acetate in acetic acid
at 60 °C gives the lactone in 69% yield (10:1 dr) along with 25% of a
benzylic acetate; see: (a) Citterio, A.; Sebastiano, R.; Nicolini, M.
Tetrahedron 1993, 49, 7743–7760. With ferrocenium hexafluoropho-
sphate or copper(II) chloride gives the lactone with up to 28% yield (10:1
dr) along with dimers; see: (b) Jahn, U.; Hartmann, P. Chem. Commun.
1998, 209–210. (c) Jahn, U.; Hartmann, P.; Dix, I.; Jones, P. G. Eur. J.
Org. Chem. 2001, 3333–3355.
(5) (a) Oumar-Mahamat, H.; Moustrou, C.; Surzur, J.-M.; Bertrand,
M. P. J. Org. Chem. 1989, 54, 5684–5688. (b) Journet, M.; Malacria, M.
J. Org. Chem. 1992, 57, 3085–3093. (c) Curran, D. P.; Shen, W.
Tetrahedron 1993, 49, 755–770. (d) Leonetti, J. A.; Gross, T.; Little,
R. D. J. Org. Chem. 1996, 61, 1787–1793. (e) Devin, P.; Fensterbank, L.;
Malacria, M. J. Org. Chem. 1998, 63, 6764–6765. (f) Curran, D. P.;
Sisko, J.; Balog, A.; Sonoda, N.; Nagahara, K.; Ryu, I. J. Chem. Soc.,
Perkin Trans. 1 1998, 1591–1594. (g) Pattenden, G.; Stoker, D. A.;
Thomson, N. M. Org. Biomol. Chem. 2007, 5, 1776–1788. (h) Nicolaou,
K. C.; Gray, D. Angew. Chem., Int. Ed. 2001, 40, 761–763. (i) Kim, J.;
Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238–241. (j)
Movassaghi, M.; Ahmad, O. K.; Lathrop, S. P. J. Am. Chem. Soc.
2011, 133, 13002–13005.
(12) In the absence of copper(II) triflate the yield of 7a was only 28%
(4.2:1 dr). In the absence of manganese(III) acetate substrate decom-
position occurred.
Org. Lett., Vol. 14, No. 12, 2012
2941