4
2832–2842;
be explained at this stage.
(d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acenã, J. L.;
Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422–518.
[6] Zhu, Y.; Han, J.; Wang, J.; Shibata, N.; Sodeoka, M.; Soloshonok, V.
A.; Coelho, J. A. S.; Toste, F. D. Chem. Rev. 2018, 118, 3887–3964.
[7] Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc.
2013, 135, 2470–2473.
(c) Irradiation of the α-dicarbonyl motif in oxalate 1a could generate a
triplet state possessing a redox potential within the range of redox
potential of Selectfluor®, thus explaining the formation of 2a in entry
10 (Table 1). For a recent publication involving the participation of the
triplet state of diacetyl in a photoredox process under visible light
irradiation, see: Li, L.; Mu, X.; Liu, W.; Wang, Y.; Mi, Z.; Li, C. -J. J.
Am. Chem. Soc. 2016, 138, 5809–5812.
[8] Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. J. Am. Chem. Soc.
2015, 137, 9571–9574.
[9] Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561–2578.
[10] Rueda-Becerril, M.; Chatalova Sazepin, C.; Leung, J. C. T.;
Okbinoglu, T.; Kennepohl, P.; Paquin, J. F.; Sammis, G. M. J. Am.
Chem. Soc. 2012, 134, 4026–4029.
[11] For reviews on radical fluorination, see:
(a) Chatalova-Sazepin, C.; Hemelaere, R.; Paquin, J. F.; Sammis, G.
M. Synthesis 2015, 2554–2569;
(b) Lantaño, B.; Postigo, A. Org. Biomol. Chem. 2017, 15, 9954–9973.
[12] For selected recent contributions, see:
(a) Rueda-Becerril, M.; Mahé, O.; Drouin, M.; Majewski, M. B.; West,
J. G.; Wolf, M. O.; Sammis, G. M.; Paquin, J.-F. J. Am. Chem. Soc.
2014, 136, 2637–2641;
(b) Ventre, S.; Petronijevic, F. R.; Macmillan, D. W. C. J. Am. Chem.
Soc. 2015, 137, 5654–5657;
(c) Wu, X.; Meng, C.; Yuan, X.; Jia, X.; Qian, X.; Ye, J. Chem.
Commun. 2015, 51, 11864–11867.
[13] Li, Z.; Wang, Z.; Zhu, L.; Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136,
16439–16443.
[14] Chen, H.; Liu, Z.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. Angew.
Chem. Int. Ed. 2017, 56, 15411–15415.
[15] For selected recent contributions, see:
(a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588–
13591;
(b) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem. Int. Ed. 2017,
56, 13361–13365;
(c) Chen, H.; Zhu, L.; Li, C. Org. Chem. Front. 2017, 4, 565–568;
(d) Jiang, H.; Studer, A. Angew. Chem. Int. Ed. 2018, 57, 10707–
10711.
[16] For selected recent contributions on direct C(sp3)–H radical
fluorination, see:
(a) Liu, W.; Huang, X.; Cheng, M. J.; Nielsen, R. J.; Goddard, W. A.;
Groves, J. T. Science 2012, 337, 1322–1325;
(b) Bloom, S.; Pitts, C. R.; Miller, D. C.; Haselton, N.; Holl, M. G.;
Urheim, E.; Lectka, T. Angew. Chem. Int. Ed. 2012, 51, 10580–10583;
(c) Liu, W.; Groves, J. T. Angew. Chem. Int. Ed. 2013, 52, 6024–6027;
(d) Xia, J. B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494–
17500;
(e) Pitts, C. R.; Bloom, S.; Woltornist, R.; Auvenshine, D. J.; Ryzhkov,
L. R.; Siegler, M. A.; Lectka, T. J. Am. Chem. Soc. 2014, 136, 9780–
9791;
(f) Bloom, S.; Knippel, J. L.; Lectka, T. Chem. Sci. 2014, 5, 1175–
1178;
(g) Hua, A. M.; Mai, D. N.; Martinez, R.; Baxter, R. D. Org. Lett.
2017, 19, 2949–2952.
For selected recent contributions on remote C(sp3)–H redical
fluorination, see:
(a) Bume, D. D.; Pitts, C. R.; Ghorbani, F.; Harry, S. A.; Capilato, J.
N.; Siegler, M. A.; Lectka, T. Chem. Sci. 2017, 8, 6918–6923;
(b) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L.
Angew. Chem. Int. Ed. 2018, 57, 11413–11417;
(c) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.;
Leonori, D. Angew. Chem. Int. Ed. 2018, 57, 744–748.
[17] For selected recent contributions, see:
(a) Zhao, H.; Fan, X.; Yu, J.; Zhu, C. J. Am. Chem. Soc. 2015, 137,
3490–3493;
(b) Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.; Knowles, R.
R. J. Am. Chem. Soc. 2016, 138, 10794–10797;
(c) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.;
Leonori, D. Angew. Chem. Int. Ed. 2018, 57, 744–748.
[18] Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.;
Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270–11273.
[19] Su, J. Y.; Grünenfelder, D. C.; Takeuchi, K.; Reisman, S. E. Org. Lett.
2018, 20, 4912–4916.
[20] The difference of isolated yields of 2a between entry 6 and 7 (Table 1)
could be accounted for the formation of several minor and
uncharacterized fluorinated side-products observed when the reaction
is carried out at 40 °C.
[21] In this case, methyl oxalate 3a was fully recovered after work-up.
[22] (a) Both exeriments have been carried out twice with consistent results
for each run.
(b) In view of the literature redox potentials of the different chemical
species involved in the reaction (fac-Ir(ppy)3, Selecfluor® and cesium
oxalate 1), the formation of 2a in entry 9 (Table 1) can not reasonably