Organic Letters
Letter
reactor was diluted to 0.1 M (to avoid precipitation), sparged
with argon (to remove the excess of perfluoroalkyl iodide), and
additional Et3N (2 equiv) was added. Complete conversion of
3ee into the deiodinated product 4 was observed in less than 1
min residence time (50 °C, 20 bar). The obtained
pentafluoropentanol (4) is the desired side chain of
Fulvestrant,19c but due to its volatility, it was decided to
functionalize this intermediate further as its benzoyl ester 5 for
isolation. To demonstrate the scalability of this protocol, a
scale-out was successfully performed, allowing gram-scale
isolation of 5 (1.23 g, 73% yield over three steps), with a
single chromatographic purification step.
In summary, we report two complementary continuous flow
methods for the photochemical iodoperfluoroalkylation of
alkenes, with productivity up to 7.6 g h−1. The ATRA reaction
can be achieved under irradiation at 405 nm, using
substoichiometric loading of an inexpensive amine base.
Alternatively, reaction can also be achieved by irradiation at
a longer wavelength (450 nm), in the presence of a low loading
of PDI dye. In situations with light-sensitive substrates, this
method could also prove to be of importance. Mechanistic
insights were gained regarding the halogen-bond photo-
activation of perfluoroalkyl iodides by Et3N. Finally, a gram-
scale preparation of a fluorinated API intermediate was
demonstrated in two flow steps from inexpensive starting
materials.
the Corning Advanced-Flow lab photoreactor used in this
study in Graz.
REFERENCES
■
(1) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed.
2013, 52, 8214.
(2) (a) Mu
̈
ller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
J. L.;
(b) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena,
̃
Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(c) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell,
N. A. J. Med. Chem. 2015, 58, 8315. (d) Fujiwara, T.; O’Hagan, D. J.
Fluorine Chem. 2014, 167, 16. (e) Stuart, A. C.; Tumbleston, J. R.;
Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013,
135, 1806.
(3) Barata-Vallejo, S.; Cooke, M. V.; Postigo, A. ACS Catal. 2018, 8,
7287.
́
(4) Banus, J.; Emeleus, H. J.; Haszeldine, R. N. J. Chem. Soc. 1950, 0,
3041.
(5) (a) Bravo, A.; Bjørsvik, H.-R.; Fontana, F.; Liguori, L.; Mele, A.;
Minisci, F. J. Org. Chem. 1997, 62, 7128. (b) Dolbier, W. R. Chem.
Rev. 1996, 96, 1557.
(6) (a) Brace, N. O. J. Fluorine Chem. 1999, 93, 1. (b) Barata-Vallejo,
S.; Postigo, A. Coord. Chem. Rev. 2013, 257, 3051.
(7) (a) Wallentin, C. J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2012, 134, 8875. (b) Nguyen, J. D.; Tucker,
J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc.
2011, 133, 4160. (c) Rawner, T.; Lutsker, E.; Kaiser, C. A.; Reiser, O.
ACS Catal. 2018, 8, 3950.
(8) (a) Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem., Int. Ed.
2014, 53, 12064. (b) Beniazza, R.; Atkinson, R.; Absalon, C.; Castet,
ASSOCIATED CONTENT
* Supporting Information
■
́
̀
F.; Denisov, S. A.; McClenaghan, N. D.; Lastecoueres, D.; Vincent, J.
M. Adv. Synth. Catal. 2016, 358, 2949. (c) Zhang, T.; Wang, P.; Gao,
Z.; An, Y.; He, C.; Duan, C. RSC Adv. 2018, 8, 32610. (d) Yajima, T.;
Ikegami, M. Eur. J. Org. Chem. 2017, 2017, 2126.
S
The Supporting Information is available free of charge on the
(9) (a) Wang, Y.; Wang, J.; Li, G. X.; He, G.; Chen, G. Org. Lett.
2017, 19, 1442. (b) Beniazza, R.; Remisse, L.; Jardel, D.;
Experimental procedures, and characterization of all
products, including 1H, 13C, and 19F NMR spectra
́
̀
Lastecoueres, D.; Vincent, J. M. Chem. Commun. 2018, 54, 7451.
(c) Liu, Y.; Chen, X.-L.; Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu,
L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 4019.
(10) Rosso, C.; Filippini, G.; Cozzi, P. G.; Gualandi, A.; Prato, M.
ChemPhotoChem. 2019, 3, 193.
AUTHOR INFORMATION
■
́
(11) Cambie, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.;
Corresponding Author
ORCID
̈
Noel, T. Chem. Rev. 2016, 116, 10276.
(12) (a) Politano, F.; Oksdath-Mansilla, G. Org. Process Res. Dev.
̈
2018, 22, 1045. (b) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noel, T.
Chem. - Eur. J. 2014, 20, 10562. (c) Plutschack, M. B.; Pieber, B.;
̈
Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796. (d) Noel,
T. J. Flow Chem. 2017, 7, 87.
(13) (a) Zhang, X.; Li, Y.; Hao, X.; Jin, K.; Zhang, R.; Duan, C.
Tetrahedron 2018, 74, 1742. (b) Straathof, N. J. W.; Gemoets, H. P.
L.; Wang, X.; Schouten, J. C.; Hessel, V.; Noel, T. ChemSusChem
̈
Notes
2014, 7, 1612. (c) Straathof, N.; Osch, D.; Schouten, A.; Wang, X.;
̈
Schouten, J.; Hessel, V.; Noel, T. J. Flow Chem. 2015, 4, 12.
The authors declare no competing financial interest.
̈
(d) Bottecchia, C.; Wei, X. J.; Kuijpers, K. P. L.; Hessel, V.; Noel, T. J.
̈
Org. Chem. 2016, 81, 7301. (e) Wei, X. J.; Boon, W.; Hessel, V.; Noel,
T. ACS Catal. 2017, 7, 7136. (f) Wei, X. J.; Noel, T. J. Org. Chem.
2018, 83, 11377. (g) Abdiaj, I.; Bottecchia, C.; Alcazar, J.; Noel, T.
Synthesis 2017, 49, 4978. (h) Straathof, N. J. W.; Cramer, S. E.;
Hessel, V.; Noel, T. Angew. Chem., Int. Ed. 2016, 55, 15549.
(14) Amii, H.; Nagaki, A.; Yoshida, J. I. Beilstein J. Org. Chem. 2013,
9, 2793.
(15) (a) Williams, J. D.; Nakano, M.; Gerardy, R.; Rincon, J. A.; De
Frutos, O.; Mateos, C.; Monbaliu, J. C. M.; Kappe, C. O. Org. Process
Res. Dev. 2019, 23, 78. (b) Emmanuel, N.; Mendoza, C.; Winter, M.;
Horn, C. R.; Vizza, A.; Dreesen, L.; Heinrichs, B.; Monbaliu, J.-C. M.
Org. Process Res. Dev. 2017, 21, 1435. (c) Gerardy, R.; Winter, M.;
Horn, C. R.; Vizza, A.; Van Hecke, K.; Monbaliu, J.-C. M. Org. Process
Res. Dev. 2017, 21, 2012.
ACKNOWLEDGMENTS
■
̈
The CCFlow Project (Austrian Research Promotion Agency
FFG No. 862766) is funded through the Austrian COMET
Program by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT), the Austrian Federal
Ministry of Science, Research and Economy (BMWFW), and
by State of Styria (Styrian Funding Agency (SFG). C.R. thanks
European Social Fund, Operational Programme 2014/2020 -
Friuli-Venezia Giulia (Regional Code FP1799043001) for a
fellowship. Part of this work was performed under the Maria de
Maeztu Units of Excellence Program from the Spanish State
Research Agency − Grant No. MDM-2017-0720. The authors
gratefully acknowledge Corning SAS for the generous loan of
̈
̈
́
́
́
́
D
Org. Lett. XXXX, XXX, XXX−XXX