Table 4 Synthesis of NH-1,2,3-triazoles 2ca
Notes and references
1 (a) L. Wolff, Justus Liebigs Ann. Chem., 1902, 325, 129;
(b) L. Wolff, Justus Liebigs Ann. Chem., 1912, 394, 23.
2 For reviews, see: (a) A. C. Tome, in Houben-Weyl, Science
of Synthesis, ed. R. C. Storr and T. L. Gilchrist, Thieme, Stuttgart,
5th edn, 2004, Vol. 13, pp. 415–601; (b) V. P. Krivopalov and
O. P. Shkurko, Russ. Chem. Rev., 2005, 74, 339. See also:
(c) J.-H. Chen, S.-R. Liu and K. Chen, Chem.–Asian J., 2010,
5, 328; (d) N. T. Pokhodylo, V. S. Matiychuk and M. D. Obushak,
J. Comb. Chem., 2009, 11, 481; (e) G. A. Romeiro, L. O. R. Pereira,
M. C. B. V. de Souza, V. F. Ferreira and A. C. Cunha, Tetrahedron
Lett., 1997, 38, 5103; (f) J. O. F. Melo, P. M. Ratton, R. Augusti
and C. L. Donnici, Synth. Commun., 2004, 34, 369.
a
Isolated yields.
3 S. G. Agalave, S. R. Maujan and V. S. Pore, Chem.–Asian J., 2011,
6, 2696.
as the ability to inhibit indoleamine 2,3-dioxygenase (IDO)
and VIM-2 metallo-b-lactamase.16 Previous protocols for the
synthesis of NH-1,2,3-triazoles by the Wolff cyclocondensation of
a-diazoaldehydes with NH4OAc in acetic acid (HOAc) suffered
from low yields (20%–50%).11 With the aim of examining the
generality of our method, we carried out the reactions of several
a-diazo-b-oxoamides with NH4OAc. To our delight, the desired
NH-1,2,3-triazoles 2c1–2c5 were isolated with excellent yields
(Table 4). It is worth mentioning that the 1,2,3-triazole products
2a, 2b and 2c all contain an amide group and previous studies
have described its transformation into a more reactive carboxylic
acid.17 In this way, the amide group on the 1,2,3-triazole products
not only promotes the condensation but is also a potentially
useful functional group.
4 M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952.
5 (a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem.,
2002, 67, 3057; (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and
K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596.
6 L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams,
K. B. Sharpless, V. V. Fokin and G. Jia, J. Am. Chem. Soc.,
2005, 127, 15998.
7 S. Kamijo, T. Jin, Z. Huo and Y. Yamamoto, J. Am. Chem. Soc.,
2003, 125, 7786.
8 M. Ohno, M. Itoh, T. Ohashi and S. Eguchi, Synthesis, 1993, 793.
9 (a) D. Clarke, R. W. Mares and H. McNab, J. Chem. Soc., Chem.
Commun., 1993, 1026; (c) O. Sezer and O. Anac, Helv. Chim. Acta,
1994, 77, 2323; (d) F. M. Stojanovic and Z. Arnold, Collect. Czech.
Chem. Commun., 1967, 32, 2155; (e) K. Dabak and A. Akar,
Heterocycl. Commun., 2002, 8, 385.
10 (a) V. R. Campos, P. A. Abreu, H. C. Castro, C. R. Rodrigues,
A. K. Jordao, V. F. Ferreira, M. C. B. V. de Souza, F. da C. Santos,
L. A. Moura, T. S. Domingos, C. Carvalho, E. F. Sanchez,
A. L. Fuly and A. C. Cunha, Bioorg. Med. Chem., 2009, 17, 7429;
(b) A. K. Jordao, P. P. Afonso, V. F. Ferreira, M. C. B. V. de Souza,
M. C. B. Almeida, C. O. Beltrame, D. P. Paiva, S. M. S. V. Wardell,
J. L. Wardell, E. R. T. Tiekink, C. R. Damaso and A. C. Cunha,
Eur. J. Med. Chem., 2009, 44, 3777.
Considering the importance of bidentate flexible ligands
containing two 1,2,3-triazole units in coordination chemistry,
we next investigated the cyclocondensation of a-diazo-
b-oxoamides 1h/1k with 1,6-hexanediamine under the FeCl2-
catalyzed conditions.18 As expected bis-triazoles 3a and 3b
were isolated in 74% and 71% yields, respectively (eqn (1)).
The yields were calculated based on the 1,6-hexanediamine.
11 O. Sezer, K. Dabak, A. Akar and O. Anac, Helv. Chim. Acta, 1996,
79, 449.
12 Y. Wang, X. Bi, D. Li, P. Liao, Y. Wang, J. Yang, Q. Zhang and
Q. Liu, Chem. Commun., 2011, 47, 809.
13 A. Correa, O. G. Mancheno and C. Bolm, Chem. Soc. Rev., 2008,
37, 1108.
14 Y. Shen, H. Du, M. Kotake, T. Matsushima, M. Goto, H. Shirota,
F. Gusovsky, X. Li, Y. Jiang, S. Schiller, M. Spyvee, H. Davis,
Z. Zhang, R. Pelletier, M. Ikemori-Kawada, Y. Kawakami,
A. Inoue and Y. Wang, Bioorg. Med. Chem. Lett., 2010, 20,
3047.
15 For recent synthesis of NH-1,2,3-triazoles, see: J. Barluenga,
C. Valdes, G. Beltran, M. Escribano and F. Aznar, Angew. Chem.,
Int. Ed., 2006, 45, 6893.
ð1Þ
16 (a) Q. Huang, M. Zheng, S. Yang, C. Kuang, C. Yu and Q. Yang,
Eur. J. Med. Chem., 2011, 46, 5680; (b) T. Weide, S. A. Saldanha,
D. Minond, T. P. Spicer, J. R. Fotsing, M. Spaargaren,
J. M. Frere, C. Bebrone, K. B. Sharpless, P. S. Hodder and
V. V. Fokin, ACS Med. Chem. Lett., 2010, 1, 150.
17 H. Zhang, D. E. Ryono, P. Devasthale, W. Wang, K. O’Malley,
D. Farrelly, L. Gu, T. Harrity, M. Cap, C. Chu, K. Locke,
L. Zhang, J. Lippy, L. Kunselman, N. Morgan, N. Flynn,
L. Moore, V. Hosagrahara, L. Zhang, P. Kadiyala, C. Xu,
A. M. Doweyko, A. Bell, C. Chang, J. Muckelbauer, R. Zahler,
N. Hariharan and P. T. W. Cheng, Bioorg. Med. Chem. Lett., 2009,
19, 1451.
In summary, the catalytic Wolff cyclocondensation has been
realized for the first time by utilizing the strategy of an
intramolecular hydrogen bonding-activating carbonyl group,
thereby successfully addressing the challenging problem that
poor reaction efficiency existed in the Wolff cyclocondensation
of a-diazoketones with aromatic and aliphatic amines. The
reaction scope is quite broad and constitutes a powerful route
to highly functionalized 1,2,3-triazoles.
Financial supports by National Natural Science Foundation
of China (21172211, 21172029), ‘‘Hundred Talents Program’’ of
the Chinese Academy of Sciences.
18 J. D. Crowley and D. A. McMorran, Top. Heterocycl. Chem.,
2012, 28, 31–83.
c
7078 Chem. Commun., 2012, 48, 7076–7078
This journal is The Royal Society of Chemistry 2012