3872
S. K. Das, J. Frey / Tetrahedron Letters 53 (2012) 3869–3872
OAc
OH
N
R
(i) Ac2O, 158 °C, 7 h
(ii) rt, 12 h
NaOMe, dry MeOH
rt, 3 h
N
N
R
17a-c
R
N
R
OAc
18a
OH
(45%)
19a (98%)
19b (96%)
19c (97%)
18b (42%)
18c (43%)
OHC
R
N
N
R
MnO2, dry 1,4-dioxane
96 °C, 45 min
CHO
20a
(88%)
20b (85%)
20c (83%)
R =
n-hexyl
(a)
n-octyl
(b)
2-ethylhexyl
(c)
Scheme 6. Synthesis of 3,6-di(long-chain)alkylpyrazine-2,5-carboxaldehydes 20a–c.
(i) KOBut, THF, 0 oC
Supplementary data
PPh3Br
20a
(ii)
Br
S
21
Supplementary data (experimental procedures, copies of 1H and
13C NMR spectra of all new compounds) associated with this article
Br
N
N
S
S
Br
References and notes
22
(55%)
1. (a) Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem.
Rev. 2009, 109, 897; (b) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109,
5868.
Scheme 7. Wittig olefination of 20a leading to 22.
2. (a) Rabbani, M. G.; El-Kaderi, H. M. Chem. Mater. 2011, 23, 1650. and references
cited therein.; (b) Ebara, K.; Shibasaki, Y.; Ueda, M. J. Polym. Sci., Part A: Polym.
Chem. 2002, 40, 3399; (c) United States Patent 3681297, 1972.
3. Pinaud, J.; Vijayakrishna, K.; Taton, D.; Gnanou, Y. Macromolecules 2009, 42,
4932.
4. For some recent examples, see: (a) Makowski, B. T.; Lott, J.; Valle, B.; Singer, K.
D.; Weder, C. J. Mater. Chem. 2012, 22, 5190; (b) Nguyen, T. H.; Zhang, C.; Li, R.;
Sun, S. S. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 1197; (c) Lloveras, V.;
Gancedo-Vidal, J.; Figueira-Duarte, T. M.; Nierengarten, J. F.; Novoa, J. J.; Mota,
F.; Ventosa, N.; Rovira, C.; Veciana, J. J. Am. Chem. Soc. 2011, 133, 5818; (d)
Zhang, W.; Zhu, L.; Qin, J.; Yang, C. J. Phys. Chem. B 2011, 115, 12059; (e) Bounos,
G.; Ghosh, S.; Lee, A. K.; Plunkett, K. N.; DuBay, K. H.; Bolinger, J. C.; Zhang, R.;
Friesner, R. A.; Nuckolls, C.; Reichman, D. R.; Barbara, P. F. J. Am. Chem. Soc.
2011, 133, 10155.
5. For some recent examples, see: (a) Speros, J. C.; Paulsen, B. D.; White, S. P.; Wu,
Y.; Jackson, E. A.; Slowinski, B. S.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules
2012, 45, 2190; (b) Barik, S.; Bletzacker, T.; Skene, W. G. Macromolecules 2012,
45, 1165; (c) Franco, S.; Garin, J.; Martinez, P. T. R.; Orduna, J.; Yu, Y.; Lira-Cantu,
M. Org. Lett. 2012, 14, 752; (d) Delgado, P. A.; Liu, D. Y.; Kean, Z.; Wagener, K. B.
Macromolecules 2011, 44, 9529; (e) Mike, J. F.; Nalwa, K.; Makowski, A. J.;
Putnam, D.; Tomlinson, A. L.; Chaudhary, S.; Jeffries-El, M. Phys. Chem. Chem.
Phys. 2011, 13, 1338.
6. 3,6-Dimethylpyrazine-2,5-dicarboxaldehyde was synthesized by SeO2
oxidation of tetramethylpyrazine. Schumann, H.; Luo, H. K. Zeit für
Naturforsch. B: Chem. Sci. 2005, 60, 22.
7. (a) Hebbar, N.; Fiol-Petit, C.; Ramondenc, Y.; Ple, G.; Ple, N. Tetrahedron 2011,
67, 228; (b) Saito, R.; Matsumura, Y.; Suzuki, S.; Okazaki, N. Tetrahedron 2010,
66, 8273; (c) Tian, Y. H.; Kertesz, M. Macromolecules 2009, 42, 2309.
8. Pieterse, K.; Lauritsen, A.; Schenning, A. P. H. J.; Vekemans, J. A. J. M.; Meijer, E.
W. Chem. Eur. J. 2003, 9, 5597. and references cited therein.
9. Kastron, V. V.; Iovel, I. G.; Skrastins, I.; Gol’dberg, Yu. Sh.; Shymanskaya, M. V.;
Dubur, G. Ya. Khim. Geterotsikl. Soedin. 1986, 8, 1124.
10. Stadler, A. M.; Puntoriero, F.; Campagna, S.; Kyritsakas, N.; Welter, R.; Lehn, J.
M. Chem. Eur. J. 2005, 11, 3997.
ethylenedioxythiophene, dialkoxylphenylene, carbazole, phenothi-
azine etc. utilizing Suzuki and Sonogashira coupling reactions. In
this communication while we describe the first synthesis of
3,6-dialkyl-2,5-pyrazinedicarboxaldehydes and monomer 22, our
future efforts will be in the applications of 22 and related mole-
cules in organic materials.
In summary, we have synthesized pyrazine-2,5-dicarboxalde-
hyde on
a multi-gram scale by MnO2 oxidation of 2,5-
bis(hydroxymethyl)pyrazine, which in turn was obtained from
2,5-dimethylpyrazine employing double Boekelheide rearrange-
ment as a key step as reported previously. Subsequently, 3,6-di
(long-chain)alkylpyrazine-2,5-dicarboxaldehydes were synthe-
sized starting from DL-alanine by utilizing the Boekelheide reac-
tion in a regioselective fashion. Special features of the synthetic
route are the ease of the reaction sequence and the cheap com-
mercial availability of the starting materials. Despite having
attractive symmetry in 2,5-disubstituted pyrazines, they have
been somewhat neglected in polymer science due to the difficulty
in preparing functionalized pyrazines. It is anticipated that this
new family of monomers will find applications as electron defi-
cient and chemically versatile components for new materials
development. Work in this direction is currently in progress and
will be published in the future. In addition, functionalized diazinyl
heterocycles have been widely used to synthesize a large number
of biologically important molecules; therefore, the new synthetic
strategies described here would likely have applications far be-
yond the scope of material science.
11. Koelsch, C. F.; Gumprecht, W. H. J. Org. Chem. 1958, 23, 1603.
12. Klein, B.; Berkowitz, J.; Hetman, N. E. J. Org. Chem. 1961, 26, 126.
13. Zhang, C. Y.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 8783.
14. Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shiroshi, S. Chem. Pharm. Bull. 1988, 36,
3341.
Acknowledgments
15. Yang, F.; Xu, X. L.; Gong, Y. H.; Qiu, W. W.; Sun, Z. R.; Zhou, J. W.; Audebert, P.;
Tang, J. Tetrahedron 2007, 63, 9188.
This work was supported by the Israel Science FoundationGrant
No. 1019/07, and the Bar Ilan Institute for Nanotechnology and Ad-
vanced Materials to whom we are indebted.