available starting materials. For instance, oxazolidinone reacted
with halogenated dihydronaphtalenone to afford 17 in 43%
isolated yield (entry 2). The presence of an ether functionality is
also compatible with our reaction conditions (entry 2) as
well as the use of indanone derivatives (entry 2). Finally,
we attempted to access unprecedented tetrasubstituted and
halogenated enamides. In both cases, desired products 20 and
21 could be isolated without any optimization albeit in low
yield (entries 3 and 4).
3 Selected examples of heterocyclic syntheses, access to pyrimidines:
(a) A. Estrada, J. P. Lyssikatos, F. St-Jean and P. Bergeron, Synlett,
2011, 16, 2387; (b) access to pyridones: L. Carles, K. Narkunan,
S. Penlou, L. Rousset, D. Bouchu and M. A. Ciufolini, J. Org. Chem.,
2002, 67, 4304; (c) H. Imase, K. Noguchi, M. Hirano and K. Tanaka,
Org. Lett., 2008, 10, 3563; (d) access to pyrimidin-4-ones: J. M.
Ramanjulu, M. P. DeMartino, Y. Lan and R. Marquis, Org. Lett.,
2010, 12, 2270; (e) access to pyrrolidinone/chiral 4-hydroxy piperidines/
chiral 1H-Pyrrol-2(3H)-one: S. Tong, D.-X. Wang, L. Zhao, J. Zhu and
M.-X. Wang, Angew. Chem., Int. Ed., 2012, 51, 1 and references therein;
(f) G. J. Brizgys, H. H. Jung and P. E. Floreancig, Chem. Sci., 2012,
3, 438; (g) access to chiral pyrrolidines: R. Matsubara, N. Kawai and
S. Kobayashi, Angew. Chem., 2006, 118, 3898; (h) access to isoquinolin-
1-(2H)-ones: C.-C. Chen, L.-Y. Chen, R.-Y. Lin, C.-Y. Chu and
S. A. Dai, Heterocycles, 2009, 78, 2979; (i) access to pyridines:
T. Lechel, J. Dash, C. Eidamshaus, I. Brudgam, D. Lentz and H.-U.
Reissig, Org. Biomol. Chem., 2010, 8, 3007; (j) M. Movassaghi, M. D.
Hill and O. K. Ahmad, J. Am. Chem. Soc., 2007, 129, 10096; (k) access
to pyrroles: M. R. Rivero and S. L. Buchwald, Org. Lett., 2007, 9, 973.
4 W. R. Pitt, D. R. Parry, B. G. Perry and C. R. Groom, J. Med.
Chem., 2009, 52, 2952.
5 Curtius rearrangement of a,b-unsaturated acyl azides: (a) B. B. Snider
and F. B. Song, Org. Lett., 2000, 2, 407; (b) elimination of b-hydroxy-
a-silyl amides: A. Furstner, C. Brehm and Y. Cancho-Grande, Org.
Lett., 2001, 3, 3955; (c) condensation of aldehydes or ketones with
nitriles: Z. Rappoport, The Chemistry of Enamines, John Wiley &
Sons, Chichester, UK, 1994, p. 1441 Ru-catalyzed amidation of
alkynes; (d) T. Kondo, A. Tanaka, S. Kotachi and Y. Watanabe,
J. Chem. Soc. Chem. Commun., 1995, 413; (e) L. J. Gooßen,
J. E. Rauhaus and G. Deng, Angew. Chem., 2005, 117, 4110 (Angew.
Chem., Int. Ed., 2005, 44, 4042); (f) Fe- and Rh-catalyzed isomeriza-
tion of N-allylamides: J. K. Stille and Y. Becker, J. Org. Chem., 1980,
45, 2139; (g) S. Sergeyev and M. Hesse, Synlett, 2002, 1313;
(h) S. A. Sergeyev and M. Hesse, Helv. Chim. Acta, 2003, 86, 750;
(i) Rh-catalyzed carbozincation and hydrozincation of ynamides:
B. Gourdet, M. E. Rudkin, C. A. Watts and H. W. Lam, J. Org.
Chem., 2009, 74, 7849; (j) B. Gourdet and H. W. Lam, J. Am. Chem.
Soc., 2009, 131, 3803; (k) Cu-catalyzed amidation of potassium
alkenyltrifluoroborate salts: Y. Bolshan and R. A. Batey, Angew.
Chem., Int. Ed., 2008, 47, 2109; (l) for Pd-catalyzed Heck reaction:
ref. 2b; for Pd-catalyzed amidation of enol triflates, or tosylates:
A. Klapars, K. R. Campos, C.-Y. Chen and R. P. Volante, Org.
Lett., 2005, 7, 1185; (m) D. J. Wallace, D. J. Klauber, C.-Y. Chen
and R. P. Volante, Org. Lett., 2003, 5, 4749; (n) Pd-mediated Heck
arylation: Y. Liu, D. Li and C.-M. Park, Angew. Chem., Int. Ed.,
2011, 50, 7333; (o) for Cu-catalyzed coupling between amides and
alkenyl halides: L. Jiang, G. E. Job, A. Klapars and S. L. Buchwald,
Org. Lett., 2003, 5, 3667; (p) R. Chen and J. Porco, Org. Lett., 2000,
2, 1333; (q) X. Pan, Q. Cai and D. Ma, Org. Lett., 2004, 6, 1809.
6 (a) C. A. Zezza and M. B. Smith, Synth. Commun., 1987, 17, 729;
(b) ref. 3k; (c) for reductive acylation of ketoximes: M. J. Burk,
G. Casy and N. B. Johnson, J. Org. Chem., 1998, 63, 6084; (d) for
an access to enamides via acylation of imines: J. T. Reeves, Z. Tan,
Z. S. Han, G. Li, Y. Zhang, Y. Xu, D. C. Reeves, N. C. Gonnella,
S. Ma, H. Lee, B. Z. Lu and C. H. Senanayake, Angew. Chem., Int.
Ed., 2012, 51, 1400 and references therein.
While the detailed mechanistic picture of this reaction
remains unclear, several lines of evidence point to a mechanism
distinct from the classic p-TSA catalyzed enamide synthesis
reactions. First, the reaction does not proceed in the absence of
an organic base. Second, weaker Lewis acids only afforded
N-hemiaminal intermediates in the presence of the base. Third,
the reaction showed a strong dependence on the nature/strength
of the base; for unhindered carbonyl substrates the yield of the
reaction increases with the use of stronger bases whereas for
hindered carbonyl compounds steric considerations prevailed.
Taken together, these observations paint a mechanistic picture
that is consistent with a tandem aza-aldol/E2-elimination
mechanism. Finally, the optimal reaction conditions required
the use of 5 equiv of the base. Under this scenario, the
displacement of the chloride by excess base to generate a
Ti-NEt3 adduct, an even stronger Lewis acid, is plausible.9
Indeed, the activation of Lewis acids by Lewis bases is a
known concept that has been well described in the literature
especially for weak Lewis acids such as SbCl4, SiCl4, or Se
derivatives.10 The metal center in the resulting adduct is thought
to be more electropositive than without base. By analogy and
even though such activation does not seem to be reported for
Ti(IV) complexes, it appeared plausible to us to think that the
strong inherent acidity of TiCl4 may generally hide its activation
by Lewis bases, and thus be less visible than for weak acids
(e.g. SiCl4). This Lewis base activation would only become
beneficial for reactions of high activation energy where TiCl4
alone is not sufficient to promote the transformation.
We have developed a convenient condensation of secondary
amides with a variety of carbonyl compounds in one step at
room temperature using the unique combination of TiCl4 and
NEt3 to generate polysubstituted enamides in moderate to
good yields. We expect the new enamides synthesized herein to
find application in asymmetric hydrogenations,2 and the
synthesis of diverse heterocyclic cores.3
7 (a) G. Koch, O. Loiseleur, D. Fuentes, A. Jantsch and
K.-H. Altmann, Org. Lett., 2002, 4, 3811; (b) C. M. Hayward,
D. Yohannes and S. J. Danishefsky, J. Am. Chem. Soc., 1993,
115, 9345; (c) W. A. White and H. Weingarten, J. Org. Chem.,
1967, 32, 213.
8 Y. Zhan, R. P. Hsung, X. Zhang, J. Huang, B. W. Slafer and
A. Davis, Org. Lett., 2005, 7, 1047.
9 Cationic Ti species, see: (a) G. W. Fowles and R. A. Hoodless,
J. Chem. Soc., 1963, 33; (b) A. M. Chapman and D. F. Wass,
Dalton Trans, 2012, DOI: 10.1039/c2dt30168g.
Novartis Office of Education, Diversity, and Inclusion and
Patience Moyo are acknowledged.
Notes and references
1 For reviews on the synthetic use of enamides: (a) K. Gopalaiah and
H. B. Kagan, Chem. Rev., 2011, 111, 4599.
2 (a) D. Pena, A. J. Minnaard, J. G. De Vries and B. L. Feringa,
J. Am. Chem. Soc., 2002, 124, 14552; (b) P. Harrison and G. Meek,
Tetrahedron Lett., 2004, 45, 9277; (c) P. Dupau, P. Le Gendre,
C. Bruneau and P. H. Dixneuf, Synlett, 1999, 11, 1832.
10 S. E. Denmark and T. W. Wilson, Angew. Chem., Int. Ed., 2012,
51, 3236 and references therein.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6735–6737 6737