Page 3 of 4
ChemComm
a
catalyst A (10 mol%)
Cs2CO3 (2.2 equiv.)
dioxane, rt, 3h
Br
Br
O
O
O
State Key Laboratory of Natural and Biomimetic Drugs, Peking
University, School of Pharmaceutical Sciences, Peking University, Xue
Yuan Rd. 38, Beijing 100191, China. Fax: (+86)-010-8280-5297; Tel:
35 (+86) 01082805297; E-mail: jiaoning@bjmu.edu.cn
(1)
(2)
Ph
Ph
H +
Ph
Ph
Ph
Ph
O
HO
Ph
Br
6
2a
4a
3aa (78%)
catalyst A (10 mol%)
Cs2CO3 (2.2 equiv.)
HFIP (1.5 equiv)
Department of Chemistry, East China Normal University, Shanghai
200062, China
† Electronic Supplementary Information (ESI) available: See
40 DOI: 10.1039/b000000x/
O
H+
N
H
H2N
Ph
THF, rt, 3h
Br
6
5aa (76%)
1
(a) J. M. Humphrey, A. R. Chamberlin, Chem. Rev. 1997, 97, 2243;
(b) J. Otera, Esterification: Methods, Reaction and Application;
Wiley: New York, 2003; (c) C. W. Lindsley, Curr. Top. Med. Chem.
2008, 8, 12; (d) E. Armelin, L. Franco, A. Rodriguez-Galan, J.
Puiggali, Macromol. Chem. phys. 2002, 203, 48; (e) M. A. Glomb,
C. Pfahler, J. Biol. Chem. 2001, 276, 41638; (f) L. H. Hu, H. B. Zou,
J. X. Gong, H. B. Li, L. X. Yang, S. W. Cheng, C. X. Zhou, H. Bai,
F. Gueritte, Y. Zhao, J. Nat. Prod. 2005, 68, 342 ; (g) M. Amoros, E.
Lurton, J. Boustie, L. Girre, F. Sauvager, M. Cormier, J. Nat. Prod.
1994, 57, 644.
For selected examples on synthetic application of carboxylic acid
esters, see: (a) T. Hayashi, K. Yamasaki Chem. Rev. 2003, 103,
2829; (b) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2003, 125,
6388; (c) F. López, S. R. Harutyunyan, A. Meetsma, A. J. Minnaard,
B. L. Feringa, Angew. Chem. Int. Ed. 2005, 44, 2752; (d) K. Inanaga,
K. Takasu, M. Ihara, J. Am. Chem. Soc. 2005, 127, 3668.
For selected examples on synthetic application of carboxylic acid
amides, see: (a) K. Ishihara, Y. Furuya, H. Yamamoto, Angew.
Chem. Int. Ed. 2002, 41, 2983; (b) C.-W. Kuo, J.-L. Zhu, J.-D. Wu,
C.- M. Chu, C.-F. Yao, K.-S. Shia, Chem. Commun. 2007, 301; (c)
G. W. Wang, T. T. Yuan, D. D. Li, Angew. Chem. Int. Ed. 2011, 50,
1380; (d) X. X. Zhang, W. T. Teo, P. W. H. Chan, J. Organomet.
Chem. 2011, 696, 331.
(1) R. C. Larock, Comprehensive Organic Transformations; VCH:
New York, 1999; (2) J. W. Bode, Curr.Opin. Drug Discovery Dev.
2006, 9, 765.
A plausible mechanism for this reaction is illustrated in
Scheme 2. The addition of the NHC to bromoenals 1 affords
the Breslow intermediates Ⅰafter addition and rearrangement,
which are the tautomer of the intermediates Ⅱ. The leaving of
the bromide generates the α,β-Unsaturated acylazolium ions
III as the key intermediates. Subsequent nucleophilic attack
by the alcohols 2 affords the esters 3 with the regeneration of
the NHC catalysts (Scheme 2). In the amidation process, the
10 activated esters Ⅳ are produced by attack of HFIP with the
formation of NHC to complete the catalytic cycle. Subsequent
substitution reaction with the amines 4 affords the amides 5.
In summary, we have demonstrated a simple and efficient
NHC-catalyzed transformation of bromoenal into α,β-
15 unsaturated esters or amides with high stereoselectivity
through C-Br bond cleavage and C-O or C-N bond formation.
The NHC-catalyzed processes occur under mild conditions.
More, the ready availability of the starting materials,
avoidance of external oxidants and the usefulness of the
20 products all make this strategy quite attractive. Further studies
on the scope, and the synthetic applications are ongoing in our
laboratory.
45
50
55
60
65
70
5
2
3
4
5
For some selected catalytic approaches to ester bond formation, see:
(a) A. Sato, Y. Nakamura, T. Maki, K. Ishihara, H. Yamamoto, Adv.
Synth. Catal. 2005, 347, 1337; (b) C.-T. Chen, Y. S. Munot, J. Org.
Chem. 2005, 70, 8625; (c) K. Ishihara, S. Nakagawa, A. Sakakura, J.
Am. Chem. Soc. 2005, 127, 4168; (d) S. Magens, M. Ertelt, A.
Jatsch, B. Plietker, Org. Lett. 2008, 10, 53; (e) B. Maji, S.
Vedachalan, X. Ge, S. Cai, X.-W. Liu, J. Org. Chem. 2011, 76,
3016.
75 6
For some selected catalytic approaches to amide bond formation,
see: (a) W.-J. Yoo, C.-J. Li, J. Am. Chem. Soc. 2006, 128, 13064; (b)
Chan, J. Baucom, K. D. Murry, J. A. J. Am. Chem. Soc. 2007, 129,
14106; (c) A. J. A. Watson, A. C. Maxwell, J. M. J. Williams, Org.
Lett. 2009, 11, 2667; (d) B. Gnanaprakasam, D. Milstein, J. Am.
Chem. Soc. 2011, 133, 1682; (e) C. Qin, W. Zhou, F. Chen, Yang.
Ou, N. Jiao, Angew. Chem. Int. Ed. 2011, 50, 12595.
80
7
For some selected redox esterification of aldehydes by NHC
catalysis, see: (a) K. Y.-K. Chow, J. W. Bode, J. Am. Chem. Soc.
2004, 126, 8126; (b) N. T. Reynolds, J. R. D. Alaniz, T. Rovis, J.
Am. Chem. Soc. 2004, 126, 9518; (c) S. S. Sohn, J. W. Bode, Org.
Lett. 2005, 7, 3873; (d) N. T. Reynolds, T. Rovis, J. Am. Chem. Soc.
2005, 127, 16406; (e) Audrey. Chan, K. A. Scheidt, Org. Lett. 2005,
7, 905; (f) K. Zeitler, Org. Lett. 2006, 8, 637; (g) S. D. Sarkar, S.
Grimme, A. Studer, J. Am. Chem. Soc. 2010, 132, 1190; (h) R. S.
Reddy, J. N. Rosa, L. F. Veiros, S. Caddick, P. M. P. Gois, Org.
Biomol. Chem. 2011, 9, 3126; (i) B. Maji, S. Vedachalan, X. Ge, S.
Cai, X.-W. Liu, J. Org. Chem. 2011, 76, 3016; (j) S. S. Sohn, J. W.
Bode, Angew. Chem. Int. Ed. 2006, 45, 6021; (k) C. A. Rose. K.
Zeitler, Org. Lett. 2010, 12, 4552.
85
90
Scheme 2. Proposed Catalytic Cycles for NHC-catalyzed ester and amide
25 bond formation
Financial support from National Basic Research Program of
China (973 Program) (Grant No. 2009CB825300), National
Science Foundation of China (No 21172006), and Peking
University are greatly appreciated. We thank Yang Ou in this
30 group for reproducing the results of 3ah and 5ae.
95 8
For redox amidation of aldehydes by NHC catalysis, see: (a) H. U,
Vora, T. Rovis, J. Am. Chem. Soc. 2007, 129, 13796; (b) J. W. Bode,
S. S. Sohn, J. Am. Chem. Soc. 2007, 129, 13798; (c) S. D. Sarkar, A.
Studer, Org. Lett. 2010, 12, 1992.
9
During the preparation of this manuscript, a N-heterocyclic carbene
catalyzed reactions of bromoenal with 1,3-dinucleophilic reagents
was reported: C. Yao, D. Wang, J. Lu, T. Li, W. Jiao, C. Yu, Chem.
Eur. J. 2012, 18, 1914.
100
Notes and references
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3