Journal of the American Chemical Society
Page 8 of 10
(12) Marcia de Figueiredo, R.; Suppo, J.-S.; Campagne, J.-M. Nonclas-
(33) Gelling, A.; Orrell, K. G.; Osborne, A. G.; Šik, V. Synthesis and
sical Routes for Amide Bond Formation. Chem. Rev. 2016, 116,
12029–12122.
(13) Noda, H.; Furutachi, M.; Asada, Y.; Shibasaki, M.; Kumagai, N.
Unique Physicochemical and Catalytic Properties Directed by the
B3NO2 Ring System. Nat. Chem. 2017, 9, 571–577.
(14) Schnolzer, M.; Kent, S. B. Constructing Proteins by Dovetailing
Unprotected Synthetic Peptides: Backbone-Engineered HIV Protease.
Science 1992, 256, 221–225.
(15) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Synthesis
of Proteins by Native Chemical Ligation. Science 1994, 266, 776–779.
(16) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Substrate-Directable
Chemical Reactions. Chem. Rev. 1993, 93, 1307–1370.
(17) Bhadra, S.; Yamamoto, H. Substrate Directed Asymmetric Reac-
tions. Chem. Rev. 2018, 118, 3391–3446.
(18) Tsuji, H.; Yamamoto, H. Hydroxy-Directed Amidation of Carbox-
ylic Acid Esters using a Tantalum Alkoxide Catalyst. J. Am. Chem. Soc.
2016, 138, 14218–14221.
(19) Muramatsu, W.; Tsuji, H.; Yamamoto, H. Catalytic Peptide Syn-
thesis: Amidation of N-Hydroxyimino Esters. ACS Catal. 2018, 8,
2181–2187.
NMR Solution Properties of Rhenium(I) and Platinum (IV) Complexes
of Oligopyridines. Polyhedron 1999, 18, 1285–1291.
1
2
3
4
5
6
7
8
(34) With regard to chemical ligation, it seems that there are several
interpretations such as that it must be proceed in the presence of most
unprotected functional groups, tolerate aqueous conditions, and/or
work for longer peptide chains et al. Indeed, a majority of chemical
ligations seem to tolerate aqueous conditions and work for longer pep-
tide chains such as polypeptides and proteins. On the other hand, we
have not found a precise definition for chemical ligation. Our presented
investigation of chemical ligation herein is focused on the chemical
peptide synthesis without any limitation and prefunctionalization of the
ligation sites through “all catalytic convergent process” which solves
the problems of multistep processes of linier SPPS and LPPS. Thus, we
decide to use the term “chemical ligation” for our all catalytic conver-
gent peptide synthesis strategy.
(35) Saxon, E.; Bertozzi, C. R. Cell Surface Engineering by a Modified
Staudinger Reaction. Science 2000, 287, 2007–2010.
(36) Kulkarni, S. S.; Sayers, J.; Premdjee, B.; Payne, R. J. Rapid and
Efficient Protein Synthesis through Expansion of the Native Chemical
Ligation Concept. Nat. Rev. Chem. 2018, 2, 0122.
(37) Conibear, A. C.; Watson, E. M.; Payne, R. J.; Becker, C. F. W.
Native Chemical Ligation in Protein Synthesis and Semi-Synthesis.
Chem. Soc. Rev. 2018, 47, 9046–9068.
(38) Crich, D.; Sharma, I. Triblock Peptide and Peptide Thioester Syn-
thesis with Reactivity-Differentiated Sulfonamides and Peptidyl Thio-
acids. Angew. Chem. Int. Ed. 2009, 48, 7591–7594.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Amino Acid-Protect-
ing Groups. Chem. Rev. 2009, 109, 2455–2504.
(21) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N.
K. A Two-Step Approach to Achieve Secondary Amide Transami-
dation Enabled by Nickel Catalysis. Nat. Commun. 2016, 7, 11554.
(22) Anderson, G. W.; Callahan, F. M. t-Butyl Esters of Amino Acids
and Peptides and Their Use in Peptide Synthesis. J. Am. Chem. Soc.
1960, 82, 3359–3363.
(23) Lamkin, W. M.; Gehrke, C. W. Quantitative Gas Chromatography
of Amino Acids. Preparation of n-Butyl N-Trifluoroacetyl Esters. Anal.
Chem. 1965, 37, 383–389.
(24) Lorenz, H.; Seidel-Morgenstern, A. Process to Separate Enantio-
mers. Angew. Chem. Int. Ed. 2014, 53, 1218–1250.
(25) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Or-
ganic Synthesis 4th edn (Wiley, 2007).
(26) Han, G.; Tamaki, M.; Hruby, V. J. Fast, Efficient and Selective
Deprotection of the tert-Butoxycarbonyl (Boc) Group Using HCl/Di-
oxane (4 M). J. Peptide Res. 2001, 58, 338–341.
(27) Brummond, K. M.; Painter, T. O.; Probst, D. A.; Mitasev, B. Rho-
dium(I)-Catalyzed Allenic Carbocyclization Reaction Affording δ- and
ε-Lactams. Org. Lett. 2007, 9, 347–349.
(28) Kagiya, T.; Sumida, Y.; Tachi, T. An Infrared Spectroscopic Study
of Hydrogen Bonding Interaction. Structural Studies of Proton-Donat-
ing and -Accepting Powers. Bull. Chem. Soc. Jpn. 1970, 43, 3716–3722.
(29) Kurokawa, N.; Ohfune, Y. Total Synthesis of Echinocandins. 2.
Total Synthesis of Echinocandin D via Efficient Peptide Coupling Re-
actions. J. Am. Chem. Soc. 1986, 108, 6043–6045.
(30) Aspin, S. J.; Taillemaud, S.; Cyr, P.; Charette, A. B. 9-Silafluo-
renyl Dichlorides as Chemically Ligating Coupling Agents and Their
Application in Peptide Synthesis. Angew. Chem. Int. Ed. 2016, 55,
13833–13837.
(39) Soellner, M. B.; Nilsson, B. L.; Raines, R. T. Reaction Mechanism
and Kinetics of the Traceless Staudinger Ligation. J. Am. Chem. Soc.
2006, 128, 8820–8828.
(40) Tam, A.; Soellner, M.; Raines, R. T. Water-Soluble Phosphinothi-
ols for Traceless Staudinger Ligation and Integration with Expressed
Protein Ligation. J. Am. Chem. Soc. 2007, 129, 11421–11430.
(41) Bode, J. W.; Fox, R. M.; Baucom, K. D. Chemoselective Amide
Ligations by Decarboxylative Condensations of N-Alkylhydroxyla-
mines and α-Ketoacids. Angew. Chem. Int. Ed. 2006, 45, 1248–1252.
(42) Noda, M.; Teranishi, Y.; Takahashi, H.; Toyosato, M.; Notake,
M.; Nakanishi, S.; Numa, S. Isolation and Structural Organization of
the Human Preproenkephalin Gene. Nature 1982, 297, 431–434.
(43) Okada, Y.; Ohta, N. Amino Acids and Peptides. VII. Synthesis of
Methionine-Enkephalin Using Transfer Hydrogenation. Chem. Pharm.
Bull. 1982, 30, 581–585.
(44) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, Jr. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B.
A.; Wells, A.; Zaks, A.; Zhang, T. Y. Key Green Chemistry Research
Areas–a Perspective from Pharmaceutical Manufacturers. Green Chem.
2007, 9, 411–420.
(45) Bayer, E.; Mutter, M. Liquid Phase Synthesis of Peptides. Nature
1972, 237, 512–513.
(46) Isidro-Llobet, A.; Kenworthy M. N.; Mukherjee, S.; Kopach, M.
E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F. Sustainability
Challenges in Peptide Synthesis and Purification: From R&D to Pro-
duction. J. Org. Chem. 2019, 84. 4615–4628.
(31) Smith, G. G.; Sivakua, T. Mechanism of the Racemization of
Amino Acids. Kinetics of Racemization of Arylglycines. J. Org. Chem.
1983, 48, 627–634.
(32) Bhadra, S.; Akakura, M.; Yamamoto, H. Design of a New Bime-
tallic Catalyst for Asymmetric Epoxidation and Sulfoxidation. J. Am.
Chem. Soc. 2015, 137, 15612–15615.
ACS Paragon Plus Environment