10.1002/anie.202008630
Angewandte Chemie International Edition
RESEARCH ARTICLE
C.-K. Ran, X.-W. Chen, Y.-Y. Gui, J. Liu, L. Song, K. Ren, D.-G. Yu, Sci.
China Chem. 2020, DOI: 10.1007/s11426-020-9788-2.
T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Nat. Commun. 2019, 10, 3582; y)
Q.-Y. Meng, T. E. Schirmer, A. L. Berger, K. Donabauer, B. König, J.
Am. Chem. Soc. 2019, 141, 11393-11397; z) H. Wang, Y. Gao, C.
Zhou, G. Li, J. Am. Chem. Soc. 2020, 142, 8122-8129; aa) W.-J. Zhou,
Z.-H. Wang, L.-L. Liao, Y.-X. Jiang, K.-G. Cao, T. Ju, Y. Li, G.-M. Cao,
D.-G. Yu, Nat. Commun. 2020, 11, 3263.
[3]
a) A. Albini, M. Fagnoni, Handbook of Synthetic Photochemistry; Wiley-
VCH, 2009; b) C. Stephenson, T. Yoon, D. W. C. MacMillan, Visible
Light Photocatalysis in Organic Chemistry; Wiley-VCH, 2018; c) J.
Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828-6838; d) C. K.
Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-
5363; e) D. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176; f) E.
Meggers, Chem. Commun. 2015, 51, 3290-3301; g) D. C. Fabry, M.
Rueping, Acc. Chem. Res. 2016, 49, 1969-1979; h) J. C. Tellis, C. B.
Kelly, D. N. Primer, M. Jouffroy, N. R. Patel, G. A. Molander, Acc.
Chem. Res. 2016, 49, 1429-1439; i) N. A. Romero, D. A. Nicewicz,
Chem. Rev. 2016, 116, 10075-10166; j) M. N. Hopkinson, A. Tlahuext-
Aca, F. Glorius, Acc. Chem. Res. 2016, 49, 2261-2272; k) K. L. Skubi,
T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035-10074; l) J.-P.
Goddard, C. Ollivier, L. Fensterbank, Acc. Chem. Res. 2016, 49, 1924-
1936; m) E. C. Gentry, R. R. Knowles, Acc. Chem. Res. 2016, 49,
1546-1556; n) Q. Liu, L.-Z. Wu, Natl. Sci. Rev. 2017, 4, 359-380; o) J.
Xie, H. Jin, A. S. K. Hashmi, Chem. Soc. Rev. 2017, 46, 5193-5203; p)
L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed.
2018, 57, 10034-10072; q) L. Buzzetti, G. E. M. Crisenza, P.
Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 3730-3747; r) R. C.
McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019, 1,
111-125; s) H. Jiang, A. Studer, CCS Chem. 2019, 1, 38-49; t) Y. Chen,
L.-Q. Lu, D.-G. Yu, C.-J. Zhu, W.-J. Xiao, Sci. China Chem. 2019, 62,
24-57; u) W.-J. Zhou, Y.-X. Jiang, L. Chen, K.-X. Liu, D.-G. Yu, Chin. J.
Org. Chem. 2020, 40, DOI: 10.6023/cjoc202004045.
[6]
For focus reviews on photocatalytic difunctionalization of alkenes, see:
a) T. Koike, M. Akita, Acc. Chem. Res. 2016, 49, 1937-1945; b) T.
Courant, G. Masson, J. Org. Chem. 2016, 81, 6945-6952; c) T. Koike,
M. Akita, Chem. 2018, 4, 409-437; d) L. Pitzer, J. L. Schwarz, F.
Glorius, Chem. Sci. 2019, 10, 8285-8291; e) Z. Zhang, L. Gong, X.-Y.
Zhou, S.-S. Yan, J. Li, D.-G. Yu, Acta Chim. Sinica 2019, 77, 783-793.
For reviews on difunctionalization of alkenes via other strategies, see: f)
E. Merino, C. Nevado, Chem. Soc. Rev. 2014, 43, 6598-6608; h) G. Yin,
X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 2413-2423; i) X. W. Lan, N. X.
Wang, Y. Xing, Eur. J. Org. Chem. 2017, 2017, 5821-5851; j) J. S.
Zhang, L. Liu, T. Chen, L. B. Han, Chem. Asian J. 2018, 13, 2277-
2291; k) G. S. Sauer, S. Lin, ACS Catal. 2018, 8, 5175-5187; l) X. Wu,
S. Wu, C. Zhu, Tetrahedron Lett. 2018, 59, 1328-1336; m) Z. Liu, Y.
Gao, T. Zeng, K. M. Engle, Isr. J. Chem. 2020, 60, 219-229.
[7]
For recent reviews, see: a) X.-Q. Hu, J.-R. Chen, W.-J. Xiao, Angew.
Chem. Int. Ed. 2017, 56, 1960-1962; b) L. M. Stateman, K. M.
Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569-1586; c) H. Chen, S.
Yu, Org. Biomol. Chem. 2020, 18, 4519-4532. For selected examples,
see: d) G. J. Choi, Q. Zhu, D. C. Miller, C. J. Gu, R. R. Knowles, Nature
2016, 539, 268-271; e) J. C. Chu, T. Rovis, Nature 2016, 539, 272-275;
f) S. Mukherjee, B. Maji, A. Tlahuext-Aca, F. Glorius, J. Am. Chem. Soc.
2016, 138, 16200-16203 g) . ecker, . Duhamel, C. J. tein, .
eiher, K. u iz, Angew. Chem. Int. Ed. 2017, 56, 8004-8008; h) W.
Shu, A. Genoux, Z. Li, C. Nevado, Angew. Chem. Int. Ed. 2017, 56,
10521-10524; i) E. M. Dauncey, S. P. Morcillo, J. J. Douglas, N. S.
Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2018, 57, 744-748; j) H.
Jiang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 1692-1696; k) X. Wu,
H. Zhang, N. Tang, Z. Wu, D. Wang, M. Ji, Y. Xu, M. Wang, C. Zhu,
Nat. Commun. 2018, 9, 3343.
[4]
For selected reviews on UV-light-driven carboxylation with CO2, see: a)
Y.-Y. Gui, W.-J. Zhou, J.-H. Ye, D.-G. Yu, ChemSusChem 2017, 10,
1337-1340. For selected examples, see: b) Y. Masuda, N. Ishida, M.
Murakami, J. Am. Chem. Soc. 2015, 137, 14063-14066; c) N. Ishida, Y.
Masuda, S. Uemoto, M. Murakami, Chem. Eur. J. 2016, 22, 6524-6527;
d) H. Seo, A. Liu, T. F. Jamison, J. Am. Chem. Soc. 2017, 139, 13969-
13972; e) H. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9,
453-456; f) N. Ishida, Y. Masuda, Y. Imamura, K. Yamazaki, M.
Murakami, J. Am. Chem. Soc. 2019, 141, 19611-19615.
[8]
For a review, see: a) H. Sommer, F. Juliá-Hernández, R. Martin, I.
Marek, ACS Cent. Sci. 2018, 4, 153-165. For selected examples, see:
b) T. Kochi, T. Hamasaki, Y. Aoyama, J. Kawasaki, F. Kakiuchi, J. Am.
Chem. Soc. 2012, 134, 16544-16547; c) J. V. Obligacion, P. J. Chirik, J.
Am. Chem. Soc. 2013, 135, 19107-19110; d) T.-S. Mei, H. H. Patel, M.
S. Sigman, Nature 2014, 508, 340-344; e) A. Masarwa, D. Didier, T.
Zabrodski, M. Schinkel, L. Ackermann, I. Marek, Nature 2014, 505,
199-203; f) J. S. Bair, Y. Schramm, A. G. Sergeev, E. Clot, O.
Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 13098-13101;
g) I. Busolv, J. Becouse, S. Mazza, M. Montandon-Clerc, X. Hu, Angew.
Chem. Int. Ed. 2015, 54, 14523-14526; h) L. Lin, C. Romano, C. Mazet,
J. Am. Chem. Soc. 2016, 138, 10344-10350; i) Y. He, Y. Cai, S. Zhu, J.
Am. Chem. Soc. 2017, 139, 1061-1064; j) M. Gaydou, T. Moragas, F.
Juliá-Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161-
12164; k) X. Chen, Z. Cheng, J. Guo, Z. Lu, Nat. Commun. 2018, 9,
3939.
[5]
For reviews on visible-light-driven carboxylation with CO2, see: a) J.
Hou, J.-S. Li, J. Wu, Asian J. Org. Chem. 2018, 7, 1439-1447; b) F. Tan,
G. Yin, Chin. J. Chem. 2018, 36, 545-554; c) Y. Cao, X. He, N. Wang,
H.-R. Li, L.-N. He, Chin. J. Chem. 2018, 36, 644-659; d) C. S. Yeung,
Angew. Chem. Int. Ed. 2019, 58, 5492-5502. For selected examples,
see: e) K. Murata, N. Numasawa, K. Shimomaki, J. Takaya, N.
Iwasawa, Chem. Commun. 2017, 53, 3098-3101; f) M.-Y. Wang, Y.
Cao, X. Liu, N. Wang, L.-N. He, S.-H. Li, Green Chem. 2017, 19, 1240-
1244; g) K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem.
Soc. 2017, 139, 9467-9470; h) V. R. Yatham, Y. Shen, R. Martin,
Angew. Chem. Int. Ed. 2017, 56, 10915-10919; i) Q.-Y. Meng, S. Wang,
B. König, Angew. Chem. Int. Ed. 2017, 56, 13426-13430; j) J.-H. Ye, M.
Miao, H. Huang, S.-S. Yan, Z.-B. Yin, W.-J. Zhou, D.-G. Yu, Angew.
Chem. Int. Ed. 2017, 56, 15416-15420; k) Z.-B. Yin, J.-H. Ye, W.-J.
Zhou, Y.-H. Zhang, L. Ding, Y.-Y. Gui, S.-S. Yan, J. Li, D.-G. Yu, Org.
Lett. 2017, 20, 190-193; l) J. Hou, A. Ee, W. Feng, J.-H. Xu, Y. Zhao, J.
Wu, J. Am. Chem. Soc. 2018, 140, 5257-5263; m) L. Sun, J.-H. Ye, W.-
J. Zhou, X. Zeng, D.-G. Yu, Org. Lett. 2018, 20, 3049-3052; n) Q.-Y.
Meng, S. Wang, G. S. Huff, B. König, J. Am. Chem. Soc. 2018, 140,
3198-3201; o) T. Ju, Q. Fu, J.-H. Ye, Z. Zhang, L.-L. Liao, S.-S. Yan,
X.-Y. Tian, S.-P. Luo, J. Li, D.-G. Yu, Angew. Chem. Int. Ed. 2018, 57,
13897-13901; p) X. Fan, X. Gong, M. Ma, R. Wang, P. J. Walsh, Nat.
Commun. 2018, 9, 4936; q) L.-L. Liao, G.-M. Cao, J.-H. Ye, G.-Q. Sun,
W.-J. Zhou, Y.-Y. Gui, S.-S. Yan, G. Shen, D.-G. Yu, J. Am. Chem. Soc.
2018, 140, 17338-17342; r) J. Hou, A. Ee, H. Cao, H.-W. Ong, J.-H. Xu,
J. Wu, Angew. Chem. Int. Ed. 2018, 57, 17220-17224; s) K. Murata, N.
Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa, Front. Chem. 2019,
7, 371; t) K. Shimomaki, T. Nakajima, J. Caner, N. Toriumi, N. Iwasawa,
Org. Lett. 2019, 21, 4486-4489; u) S. K. Bhunia, P. Das, S. Nandi, R.
Jana, Org. Lett. 2019, 21, 4632-4637; v) B. Sahoo, P. Bellotti, . Juli -
Hern ndez, .-Y. Meng, S. Crespi, B. König, R. Martin, Chem. Eur. J.
2019, 25, 9001-9005; w) C. Zhu, Y.-F. Zhang, Z.-Y. Liu, L. Zhou, H. Liu,
C. Feng, Chem. Sci. 2019, 10, 6721-6726; x) Q. Fu, Z.-Y. Bo, J.-H. Ye,
[9]
For reviews, see: a) W. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc.
Rev. 2018, 47, 654-667; b) X. Wu, C. Zhu, Acc. Chem. Res. 2020, DOI:
10.1021/acs.accounts.0c00306. For selected examples, see: c) P. Yu,
J.-S. Lin, L. Li, S.-C. Zheng, Y.-P. Xiong, L.-J. Zhao, B. Tan, X.-Y. Liu,
Angew. Chem. Int. Ed. 2014, 53, 11890-11894; d) P. Yu, S.-C. Zheng,
N.-Y. Yang, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 4041-
4045; e) L. Huang, S.-C. Zheng, B. Tan, X.-Y. Liu, Org. Lett. 2015, 17,
1589-1592; f) G. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba,
F. Gagosz, Angew. Chem. Int. Ed. 2017, 56, 11440-11444; g) X. Nie, C.
Cheng, G. Zhu, Angew. Chem. Int. Ed. 2017, 56, 1898-1902; h) W. Shu,
E. Merino, C. Nevado, ACS Catal. 2018, 8, 6401-6406.
[10] a) J. Jones, Amino Acid and Peptide Synthesis; Oxford Univ. Press,
2002; b) O. Koniev, A. Wagner, Chem. Soc. Rev. 2015, 44, 5495-5551.
[11] a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; b) T.
Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52,
8214-8264; c) H. Mei, J. Han, K. D. Klika, K. Izawa, T. Sato, N. A.
Meanwell, V. A. Soloshonok, Eur. J. Med. Chem. 2020, 186, 111826.
7
This article is protected by copyright. All rights reserved.