At the same time, aryl mesylates undergo a synthetically
useful reaction to form aryl ethers.11 Our initial investiga-
tion studied the nature of four different sulfonates. Using
sulfonates derived from 6-hydroxy quinoline (1bÀe)
paired with 3-(pyridin-4-yl)propan-1-ol (2), we found
that methanesulfonate 1c afforded the highest yield
(52%) when using our initial conditions of 1,4-dioxane
as solvent and Cs2CO3 as base at 100 °C (Table 1).
(conditions D). LiO-t-Bu in DMSO led to a 74% yield of the
reaction of 1c with 2 (Figure 1), a significant improvement
over the 52% achieved using Cs2CO3, and 1,4-dioxane at
100 °C. When the A and B conditions were applied to a variety
of aryl mesylates while keeping the alcohol constant, several
interesting features were noted (Table 2). Conditions A using
NaO-t-Bu in acetonitrile at 80 °C was the most general
affording 63À77% isolated yields for five of the six reactions.
The hindered o-methyl substrate (entry 2) furnished a 77%
yield under the NaO-t-Bu in acetonitrile conditions, while the
electron-rich p-OMe mesylate (entry 3) afforded a 77% yield
under the same conditions. The example affording a higher
yield using the weaker base, Cs2CO3, was entry 4 where a CN
group para to the mesylate led to a 32% yield when conditions
A was used and a 61% yield for conditions B.
Table 1. Arylsulfonates Derived from 6-Hydroxyquinoline
Table 2. Mesylate Transfer Using Alcohol 2 and Various ArOMsa
a Isolated, chromatographically purified. b 0.05 equiv of Pd2(dba)3
and 0.1 equiv of BippyPhos added. c Based on LCMS analysis
Based on these preliminary results, we used 1c to further
optimize our reaction conditions using microscale techni-
ques to screen a cross of six solvents and seven bases at
elevated temperatures (80 and 120 °C) in an effort to improve
upon the 52% yield.12 The screening results and subsequent
follow-up work led to identification of four optimal condi-
tions: NaO-t-Bu in acetonitrile, at 80 °C (conditions A),
Cs2CO3 in DMF at 100 °C (conditions B), NaH in DMF
at 70 °C (conditions C), and LiO-t-Bu in DMSO at 150 °C
(9) (a) So, C. M.; Kwong, F. Y. Chem. Soc. Rev. 2011, 40 (10), 4963.
(b) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.;Eur. J. 2011, 17
(6), 1728. (c) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111 (3),
1346. (d) Molander, G. A.; Shin, I. Org. Lett. 2012, 14 (12), 3138. (e)
Leowanawat, P.; Zhang, N.; Safi, M.; Hoffman, D. J.; Fryberger, M. C.;
George, A.; Percec, V. J. Org. Chem. 2012, 77 (6), 2885. (f) Chang,
J. W. W.; Chia, E. Y.; Chai, C. L. L.; Seayad, J. Org. Biomol. Chem. 2012,
10 (11), 2289. (g) Chung, K. H.; So, C. M.; Wong, S. M.; Luk, C. H.;
Zhou, Z.; Lau, C. P.; Kwong, F. Y. Chem. Commun. (Cambridge, U. K.)
2012, 48 (14), 1967. (h) Leowanawat, P.; Zhang, N.; Percec, V. J. Org.
Chem. 2012, 77 (2), 1018. (i) Muto, K.; Yamaguchi, J.; Itami, K. J. Am.
Chem. Soc. 2012, 134 (1), 169. (j) Leowanawat, P.; Zhang, N.; Resmerita,
A.-M.; Rosen, B. M.; Percec, V. J. Org. Chem. 2011, 76 (24), 9946.
(k) Shen, C.; Yang, G.; Zhang, W. Org. Biomol. Chem. 2012, 10 (17), 3500.
(l) Wu, X.; Fors, B. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50
(42), 9943. (m) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg,
A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132 (33), 11592.
(n) Naidu, A. B.; Jaseer, E. A.; Sekar, G. J. Org. Chem. 2009, 74 (10),
3675. (o) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald,
S. L. J. Org. Chem. 2008, 73 (1), 284. (p) Shafir, A.; Lichtor, P. A.;
Buchwald, S. L. J. Am. Chem. Soc. 2007,129 (12), 3490. (q) Dooleweerdt, K.;
Fors, B. P.; Buchwald, S. L. Org. Lett. 2010, 12 (10), 2350. (r) Fors, B. P.;
Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008,
130 (41), 13552.
a Conditions A: NaOt-Bu, CH3CN, 80 °C, 16 h. Conditions B:
Cs2CO3, DMF, 100 °C, 3 h. Yields represent isolated material on
1 mmol scale.
These results suggested that the mesylate-transfer reaction
can tolerate a variety of aryl mesylates including electron-rich,
electron-poor, and ortho-substitution13 when paired with a
primary alcohol. The results also indicated that the nature of
the aryl mesylate substrate can be sensitive to the strength of
the base used. With this information in hand, we turned our
(13) Using 2,6-dimethylphenyl methanesulfonate was attempted but
led to only trace amounts of product.
(14) (a) Hughes, D. L. Org. React. (Hoboken, NJ) 1992, 42. (b) Bisi,
A.; Rampa, A.; Budriesi, R.; Gobbi, S.; Belluti, F.; Ioan, P.; Valoti, E.;
Chiarini, A.; Valenti, P. Bioorg. Med. Chem. 2003, 11 (7), 1353.
(c) Kiesewetter, D. O.; Eckelman, W. C. J. Labelled Compd. Radiopharm.
2004, 47 (13), 953. (d) Miko, T.; Ligneau, X.; Pertz, H. H.; Ganellin,
C. R.; Arrang, J.-M.; Schwartz, J.-C.; Schunack, W.; Stark, H. J. Med.
Chem. 2003, 46 (8), 1523. (e) Inversion and determination of ee were
confirmed using chiral SFC with the appropriate standards. Kaufman,
T. S. Tetrahedron Lett. 1996, 37 (30), 5329. (f) The control Mitsunobu
reaction was ran at Pfizer-LJ.
(10) Looker, J. H.; Thatcher, D. N. J. Org. Chem. 1954, 19, 784.
(11) Sach, N. W.; Sutton, S. C.; Richter, D. T.; Cripps, S.; Zhu, H.;
ꢀ
Tran-Dube, M.; Cui, J. Abstracts of Papers, 239th ACS National Meeting,
San Francisco, CA, United States, Mar 21À25, 2010, ORGN-74.
(12) Results from this microscale screen are presented in the Support-
ing Information.
B
Org. Lett., Vol. XX, No. XX, XXXX