Notes and references
1 T. Hiratsuka, Biochim. Biophys. Acta, 1983, 742, 496;
A. J. Sowerby, C. K. Seehra, M. Lee and C. R. Bagshaw,
J. Mol. Biol., 1993, 234, 114; M. Tokunaga, K. Kitamura,
K. Saito, A. H. Iwane and T. Yanagida, Biochem. Biophys. Res.
Commun., 1997, 235, 47.
2 J. H. Kaplan, B. Forbush III and J. F. Hoffman, Biochemistry,
1978, 17, 1929.
3 M. Banghart, K. Borges, E. Isacoff, D. Trauner and R. H. Kramer,
Nat. Neurosci., 2004, 7, 1381; M. Volgraf, P. Gorostiza,
S. Szobota, M. R. Helix, E. Isacoff and D. Trauner, J. Am. Chem.
Soc., 2007, 129, 260; S. Muramatsu, K. Kinbara, H. Taguchi,
N. Ishii and T. Aida, J. Am. Chem. Soc., 2007, 128, 3764;
M. D. Yamada, Y. Nakajima, H. Maeda and S. Maruta,
J. Biochem. (Tokyo), 2007, 142, 691; B. Schierling, A.-J. Noel,
W. Wende, L. T. Hien, E. Volkov, E. Kubareva, T. Oretskaya,
M. Kokkinidis, A. Rompp, B. Spengler and A. Pingoud, Proc.
Natl. Acad. Sci. U. S. A., 2010, 107, 1361; F. Zhang, K. A. Timm,
K. M. Arndt and G. A. Woolley, Angew. Chem., Int. Ed., 2010,
49, 3943; F. Bonardi, G. London, N. Nouwen, B. L. Feringa and
A. J. M. Driessen, Angew. Chem., Int. Ed., 2010, 49, 7234;
C. Hoppmann, P. Schmieder, P. Domang, G. Vogelreiter,
J. Eichhorst, B. Wiesner, I. Morano, K. R-Braun and
M. Beyermann, Angew. Chem., Int. Ed., 2011, 50, 7699;
A. Mourot, M. A. Kienzler, M. R. Banghart, T. Fehrentz,
F. M. E. Huber, M. Stein, R. H. Kramer and D. Trauner, ACS
Chem. Neurosci., 2011, 2, 536.
Fig. 2 Photoresponsive interactions between MTs and kinesins
coated on the glass in the presence of 1 mM 1b. (a) Prior to irradiation.
(b) Irradiation with UV light after (a). (c) Irradiation with visible light
after (b). (d) Irradiation with UV light after (c). Scale bar: 10 mm.
on the kinesin-coated surface (Fig. 2b). Subsequent sequen-
tial irradiation with visible and UV light resulted in the
MTs detaching from and reattaching to (Fig. 2c and d) the
surface, respectively. In contrast, for 1b at or below 300 mM,
we did not observe any clear difference in the attachment
behavior of the MTs in the presence of trans-1b or cis-1b
(Fig. S5, ESIw).
4 Y. Yu, M. Nakano and T. Ikeda, Nature, 2003, 425, 145;
K. Kinbara and T. Aida, Chem. Rev., 2005, 105, 1377;
M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita,
C. J. Barrett and T. Ikeda, Angew. Chem., Int. Ed., 2008,
47, 4986; M. C. Basheer, Y. Oka, M. Mathews and N. Tamaoki,
Chem.–Eur. J., 2010, 16, 3489.
The exact mechanism of such attachment and detachment
remains unclear, however, this phenomenon can be explained
by considering that 1b functions as a photoresponsive inhibitor
of the intermolecular interactions between kinesin and the
MTs in addition to behaving as a photoresponsive energy
source when it is a substrate of ATPase kinesin. The amphi-
philic nature of 1b, with its hydrophilic triphosphate unit and
hydrophobic p-tert-butylazobenzene moiety, suggests that it
might form a complex with proteins via hydrophobic inter-
actions, forming a triphosphate-presenting surface, at suffi-
ciently high concentrations in water. We speculate that the
formation of such complexes between trans-1b and either
kinesin or the MTs inhibited the binding between the MTs
and the kinesin units. The tendency of 1b to form such
complexes was confirmed by the observation of turbidity of
the assay buffer solutions with trans-1b at 1 mM in the
presence of proteins (e.g. casein) (Fig. S6, ESIw). The same
solution became transparent after UV light irradiation indu-
cing the photoisomerization of trans-1b to cis-1b; no such
turbidity appeared for trans-1b at a concentration equal to or
less than 300 mM (Fig. S6, ESIw).
In conclusion, we have realized reversible photo-control of a
kinesin–MT motility system by using a novel photochromic
ATP analogue, ATP-Azo 1b. ATP-Azo works as both molecular
gear and energy source, and, after further accomplishment of
complete On/Off switch, would achieve higher regulation
systems in bio-motor devices.15 We anticipate that this tech-
nique might find wide applicability in nanobiotechnology, and
furthermore, with other ATPases and related systems with
other nucleotide triphosphates.16
5 M. Liu, X. Yan, M. Hu, X. Chen, M. Zhang, B. Zheng, X. Hu,
S. Shao and F. Huang, Org. Lett., 2010, 12, 2558.
6 Y. Oka and N. Tamaoki, Inorg. Chem., 2010, 49, 4765.
7 K. Ichimura, Chem. Rev., 2000, 100, 1847; N. Tamaoki and
T. Kamei, J. Photochem. Photobiol., C, 2010, 11, 47.
8 T. Seki, Polym. J. (Tokyo), 2004, 36, 435; J. Isayama, S. Nagano
and T. Seki, Macromolecules, 2010, 43, 4105.
9 T. Hohsaka, K. Kawashima and M. Sisido, J. Am. Chem. Soc.,
1994, 116, 413.
10 R. G. Yount, Advances in Enzymology, John Wiley & Sons,
New York, 1975, pp. 1–56; T. Hiratsuka, K. Uchida and
K. Yagi, J. Biochem. (Tokyo), 1977, 82, 575.
11 T. Kuwajima and H. Asai, Biochemistry, 1975, 14, 492;
J. W. Perich and R. B. Johns, Synthesis, 1988, 142; A. Matsuda,
J. Yasuoka, T. Sasaki and T. Ueda, J. Med. Chem., 1991, 34, 999;
H. Asanuma, T. Yoshida, T. Ito and M. Komiyama, Tetrahedron
Lett., 1999, 40, 7995; X.-F. Zhu, H. J. Williams Jr. and A. I. Scott,
Synth. Commun., 2003, 33, 1233.
12 K. Oiwa, D. M. Jameson, J. C. Croney, C. T. Davis, J. F. Eccleston
and M. Anson, Biophys. J., 2003, 84, 634.
13 M. E. Porter, J. M. Scholey, D. L. Stemple, G. P. A. Vigers,
R. D. Vale, M. P. Sheetz and J. R. McIntosh, J. Biol. Chem., 1987,
262, 2794; S. A. Cohn, A. L. Ingold and J. M. Scholey, J. Biol.
Chem., 1989, 264, 4290; J. Howard, A. J. Hudspeth and R. D. Vale,
Nature, 1989, 342, 154.
14 M. Castoldi and A. V. Popov, Protein Expression Purif., 2003,
32, 83; J. Howard and A. A. Hyman, Methods Cell Biol., 1983,
39, 105.
15 Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama and T. Q. P.
Uyeda, Biophys. J., 2001, 81, 1555; H. Hess, J. Clemmens, D. Qin,
J. Howard and V. Vogel, Nano Lett., 2001, 1, 235; A. Nomura,
T. Q. P. Uyeda, N. Yumoto and Y. Tatsu, Chem. Commun.,
2006, 3588; Y. Hiratsuka, T. Kamei, N. Yumoto and T. Q.
P. Uyeda, Nanobiotechnology, 2006, 2, 101; S. Taira, Y.-Z. Du,
Y. Hiratsuka, T. Q. P. Uyeda, N. Yumoto and M. Kodaka,
Biotechnol. Bioeng., 2008, 99, 734; A. M. R. Kabir, A. Kakugo,
J. P. Gong and Y. Osada, Macromol. Biosci., 2011, 11, 1314;
M. K. A. Rahim, T. Fukaminato, T. Kamei and N. Tamaoki,
Langmuir, 2011, 27, 10347; H. Hess, Annu. Rev. Biomed. Eng.,
2011, 13, 429.
We thank Dr Uyeda TQP and Prof Gong, JP labs, for their
kind help and financial support of a Grant ‘‘New Frontiers in
Photochromism (No. 471)’’ from the MEXT, Japan (T.N.).
16 R. D. Vale, J. Cell Biol., 1996, 135, 291.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 7625–7627 7627