Immobilization of a Monophosphaferrocene on a Silica Support
P. C. J. Kamer, P. W. N. M. van Leeuwen, J. Am. Chem. Soc.
2001, 123, 8468–8476; f) Z. Lu, E. Lindner, H. Mayer, Chem.
Rev. 2002, 79,102, 3543; g) P. McMorn, G. Hutchings, J. Chem.
Soc. Rev. 2004, 33, 108; h) J. M. Thomas, R. Raja, J. Organomet.
Chem. 2004, 689, 4110–4124; i) N. C. Mehendale, J. R. A. Si-
etsma, K. P. de Jong, C. A. van Walree, R. J. M. Klein Gebbink,
G. van Koten, Adv. Synth. Catal. 2007, 349, 2619–2630; j) Y.
Yang, B. Beele, J. Blümel, J. Am. Chem. Soc. 2008, 130, 3771–
3773.
(b) With Reductive Amination: Compound 3 (400 mg, 1.52 mmol)
was added to AP-functionalized HMS (2.00 g) in anhydrous MeOH
(15 mL). Solid Na[BH3CN] (470 mg, 7.6 mmol) was added and the
reaction mixture was heated to 50 °C for 3 d. The suspension was
filtered, the residue was washed with MeOH (3ϫ50 mL), and dried
in vacuo for 8 h. Analytical data: found C 11.69 H 2.94 N 2.34 %.
MAS NMR spectra are displayed in Figures 1–4. 13C CP-MAS NMR
(assignments refer to the labels shown in Figure 1): δ = 95 (h, i, j),
72.9 (g), 70.1 (k), 47.6 (c), 41.6 (d), 23.8 (b), 19.6 (e,f), 7.1 (a) ppm.
[8] F. R. Hartley, in Supported Metal Complexes (Eds.: R. Ugo, B. R.
James, D. Reidel), Dordrecht, Holland, 1985 and literature cited
therein. An overview on state-of-the-art techniques is given in
Chem. Rev. 2002, 79,102.
[9] S. Komath Mallissery, M. Nieger, D. Gudat, Z. Anorg. Allg.
Chem. 2010, 636, 1356–1360.
[10] S. Komath Mallissery, D. Gudat, Dalton Trans. 2010, 39, 4280–
4284.
[11] P. T. Panev, T. J. Pinnavaia, Science 1995, 267, 865.
[12] C. Yang, Chin. Chem. Lett. 2003, 14, 96–99.
[13] A. R. Silva, K. Wilson, A. C. Whitwood, J. H. Clark, C. Freire,
Eur. J. Inorg. Chem. 2006, 1275.
[14] a) K. Sarkar, K. Dhara, M. Nandi, P. Roy, A. Bhaumik, P.
Banerjee, Adv. Funct. Mater. 2009, 19, 223–234; b) M. Nandi, P.
Roy, H. Uyama, A. Bhaumik, Dalton Trans. 2011, 40, 12510–
12518.
[15] S. Ek, E. I. Iiskola, L. Niinisto, J. Vaittinen, T. T. Pakkanen, A.
Root, J. Phys. Chem. B 2004, 108, 11454–11463.
Acknowledgement
Financial support by the Deutsche Forschungsgemeinschaft (Graduate
College 448 “Modern NMR Methods in Material Science”; scholarship
for S.K.M.) is gratefully acknowledged. We thank Mrs. Tahira Yasmin
(Institute of Physical Chemistry) for performing the nitrogen adsorp-
tion-desorption measurements, Mr. J. Trinkner (Institute of Organic
Chemistry) for measurement of mass spectra, and Mrs. B. Förtsch (In-
stitute of Inorganic Chemistry) for elemental analyses.
References
[1] F. Mathey, A. Mitschler, R. Weisss, J. Am. Chem. Soc. 1977, 99,
3537.
[2] a) G. deLauzon, B. Deschamps, J. Fischer, F. Mathey, A.
Mitschler, J. Am. Chem. Soc. 1980, 102, 994; b) G. deLauzon, B.
Deschamps, F. Mathey, Nouv. J. Chim. 1980, 4, 683.
[16] G. Engelhardt, D. Michel, High Resolution Solid-State NMR of
Silicates and Zeolites, Wiley, New York, 1987.
[17] Although the occurrence of hydrolytic cleavage of the imine moi-
ety during work-up prevented isolation of the product, the ex-
pected constitution was further confirmed by 1H NMR spectro-
scopic data obtained directly from the reaction mixture: δ1H =
[3] For comprehensive reviews on the chemistry of phosphaferroc-
enes, see: a) F. Mathey, Coord. Chem. Rev. 1994, 137, 1; b) F.
Mathey, J. Organomet. Chem. 1990, 400, 149; c) F. Mathey, J.
Fischer, J. H. Nelson, Struct. Bonding (Berlin) 1983, 55, 154.
[4] a) C. Ganter, L. Brassat, C. Glinsböckel, B. Ganter, Organometal-
lics 1997, 16, 2862–2867; b) C. Ganter, L. Brassat, B. Ganter,
Chem. Ber./Recueil 1997, 130, 1771–1776; c) S. Qiao, D. A.
Hoic, G. C. Fu, Organometallics 1998, 17, 773–774.
[5] C. E. Garrett, G. C. Fu, J. Org. Chem. 1997, 62, 4534.
[6] a) S. Qiao, G. C. Fu, J. Org. Chem. 1998, 63, 4168–4169; b) C.
Ganter, C. Kaulen, U. Englert, Organometallics 1999, 18, 5444–
5446; c) C. Ganter, C. Glinsböckel, B. Ganter, Eur. J. Inorg.
Chem. 1998, 1163–1168; d) K. Tanaka, S. Qiao, M. Tobisu,
M. M.-C. Lo, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 9870–9871;
e) K. Tanaka, G. C. Fu, J. Org. Chem. 2001, 66, 8177–8186; f)
M. Ogasawara, K. Yoshida, T. Hayashi, Organometallics 2001,
20, 3913–3917; g) R. Shintani, M. M.-C. Lo, G. C. Fu, Org. Lett.
2000, 2, 3695–3697; h) R. Shintani, G. C. Fu, Org. Lett. 2002, 4,
3699–3702; i) R. Shintani, G. C. Fu, Angew. Chem. Int. Ed. 2003,
42, 4082–4085.
3
2
8.17 (d, JHP = 8.8 Hz, CH = N), 3.95 (d, JHP = 37.4 Hz, PCH),
4.20 (s, Cp), 3.12 (m, NCH2) 2.31 (s, CH3), 2.21 (s, CH3), 1.57
(m, CH2), 0.89 (t, CH3).
[18] For a review of the use of cyano-borohdride in reductive amina-
tions see: R. O. Hutchins, M. K. Hutchins, in Comprehensive Or-
ganic Synthesis (Eds.: B. N. Trost, I. Fleming), Pergamon Press,
New York 1991, vol. 8, pp 25–78.
[19] The 31P NMR spectrum showed the signals of two products at
–75.4 ppm (major product) and 76.1 ppm (minor product). As the
specific reactivity of the Si(OEt)3 moiety made chromatographic
separation unfeasible, the nature of the by-product remains in the
dark.
[20] S. Reinhard, J. Blümel, Magn. Reson. Chem. 2003, 41, 406–416.
[21] It is further worthwhile to mention that the intensity of the signal
of the isolated NCH2 group is substantially higher than those of
the carbon atoms in the phosphaferrocene unit and matches the
intensities of the signals attributable to the carbon atoms in the
propylidene spacer. A concise interpretation of this effect is cur-
rently unfeasible.
[7] For some representative examples see: a) W. E. Rudzinski, T. L.
Montgomery, J. S. Frye, B. L. Hawkins, G. E. Maciel, J. Catal.
1986, 98, 444–456; b) H. Gao, R. J. Angelici, J. Am. Chem. Soc.
1997, 119, 6937; c) O. Kröcher, R. A. Köppel, M. Fröba, A.
Baiker, J. Catal. 1998, 178, 284–298; d) H. Gao, R. J. Angelici,
Organometallics 1999, 18, 989; e) A. J. Sandee, J. N. H. Reek,
[22] J. Li, L. Wang, T. Qi, Y. Zhou, C. Liu, J. Chu, Y. Zhang, Micro-
porous Mesoporous Mater. 2008, 110, 442–450.
Received: March 14, 2012
Published Online: June 04, 2012
Z. Anorg. Allg. Chem. 2012, 1141–1145
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1145