Communication
ChemComm
13 G. R. Rosania, J. W. Lee, L. Ding, H. S. Yoon and Y. T. Chang, J. Am.
Chem. Soc., 2003, 125, 1130.
14 J. W. Lee, M. Jung, G. R. Rosania and Y. T. Chang, Chem. Commun.,
2003, 1852.
15 E. Kim, M. Koh, J. Ryu and S. B. Park, J. Am. Chem. Soc., 2008,
130, 12206.
16 T. Ueno, Y. Urano, K. Setsukinai, H. Takakusa, H. Kojima,
K. Kikuchi, K. Ohkubo, S. Fukuzumi and T. Nagano, J. Am. Chem.
Soc., 2004, 126, 14079.
fluorescent dyes with strong fluorescence intensity due to the
high fluorescence background often observed in tissues. We
implanted Lewis lung cancer cells in adult female C57BL mice,
and 10 days later we treated the mice with EdU. Subsequently,
5 mM of 83 in a click chemistry reaction buffer was used to label
EdU in mice tumor tissue. The tumor tissue was imaged under
a fluorescent microscope, and a strong and specific blue
fluorescence at cell nucleus was observed (Fig. 5D–F).
17 M. S. Schiedel, C. A. Briehn and P. Bauerle, Angew. Chem., Int. Ed.,
2001, 40, 4677.
Starting with the natural 7-hydroxyisoflavone, we prepared a
number of isoflavone derivatives with optimized fluorescence
properties. During this process we discovered a new class of
fluorogenic scaffolds, 3-alkyl-6-methoxy-7-hydroxychromones
(AMHCs). The fluorophores of AMHCs were found to possess
good fluorescence photophysical properties, as well as reason-
able stability and solubility in biological buffer. Moreover, the
AMHC scaffold contains an alkyl chain, which enables the
design of various terminal linker systems. AMHCs were success-
fully used in cellular and tissue imaging experiments. Given the
novelty of this fluorescent scaffold, and its advantageous photo-
physical properties, we envisage that AMHCs can be used to
design various biological probes, or used as building blocks to
develop new fluorophores with other desired properties.
18 T. Ueno, Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc.,
2006, 128, 10640.
19 I. S. Tamgho, A. Hasheminasab, J. T. Engle, V. N. Nemykin and
C. J. Ziegler, J. Am. Chem. Soc., 2014, 136, 5623.
20 P. J. Bell and P. Karuso, J. Am. Chem. Soc., 2003, 125, 9304.
21 A. Banerjee, K. Basu and P. K. Sengupta, J. Photochem. Photobiol., B,
2008, 90, 33.
22 A. S. Klymchenko and A. P. Demchenko, New J. Chem., 2004, 28, 687.
23 M. I. Lvovska, A. D. Roshal, A. O. Doroshenko, A. V. Kyrychenko and
V. P. Khilya, Funct. Mater., 2005, 12, 563.
24 E. D. Rijke, H. C. Joshi, H. R. Sanderse, A. Freek, U. A. T. Brinkman
and C. Gooijer, Anal. Chim. Acta, 2002, 468, 3.
25 J. C. Del Valle, J. Chem. Phys., 2006, 124, 104506.
26 A. S. Klymchenko and A. P. Demchenko, New J. Chem., 2004, 28,
687.
27 S. M. Beyhan, A. W. Gotz, F. Ariese, L. Visscher and C. Gooijer,
J. Phys. Chem. A, 2011, 115, 1493.
28 K. Chevalier, A. Grun, A. Stamm, Y. Schmitt, M. Gerhards and
R. Diller, J. Phys. Chem. A, 2013, 117, 11233.
29 L. Giordano, V. V. Shvadchak, J. A. Fauerbach, E. A. Jares-Erijman
and T. M. Jovin, J. Phys. Chem. Lett., 2012, 3, 1011.
30 C. Dyrager, A. Friberg, K. Dahlen, M. Friden-Saxin, K. Borjesson,
L. M. Wilhelmsson, M. Smedh, M. Grotli and K. Luthman, Chem. –
Eur. J., 2009, 15, 9417.
This work was financially supported by National Science and
Technology Major Project (2009ZX09301002-001), Institute of Materia
Medica, Chinese Academy of Medical Sciences (2014RC01) and
National Natural Science Foundation of China (No. 81402785).
31 D. Dziuba, I. A. Karpenko, N. P. Barthes, B. Y. Michel, A. S.
Klymchenko, R. Benhida, A. P. Demchenko, Y. Mely and A. Burger,
Chem. – Eur. J., 2014, 20, 1998.
Notes and references
1 M. Vendrell, D. Zhai, J. C. Er and Y. T. Chang, Chem. Rev., 2012, 32 A. Gaspar, M. J. Matos, J. Garrido, E. Uriarte and F. Borges, Chem.
112, 4391.
Rev., 2014, 114, 4960.
33 A. T. R. Williams, S. A. Winfield and J. N. Miller, Analyst, 1983,
108, 1067.
2 E. Kimura and T. Koike, Chem. Soc. Rev., 1998, 27, 179.
3 X. Li, X. Gao, W. Shi and H. Ma, Chem. Rev., 2014, 114, 590.
4 M. Schaferling, Angew. Chem., Int. Ed., 2012, 51, 3532.
34 K. R. Castleman, Biol. Bull., 1998, 194, 100.
5 R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem. Rev., 2010, 110, 2579. 35 G. F. Weber and A. S. Menko, BioTechniques, 2005, 38, 52.
6 V. Ljosa and A. E. Carpenter, Trends Biotechnol., 2008, 26, 527.
7 J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev., 2011,
40, 3483.
8 S. W. Yun, N. Y. Kang, S. J. Park, H. H. Ha, Y. K. Kim, J. S. Lee and
Y. T. Chang, Acc. Chem. Res., 2014, 47, 1277.
36 W. Sun, S. Li, R. Hu, Y. Qian, S. Wang and G. Yang, J. Phys. Chem. A,
2009, 113, 5888.
37 H. Tong, L. Wang, X. Jing and F. Wang, Macromol. Rapid Commun.,
2002, 23, 877.
38 Y. Liang, A. S. Dvornikov and P. M. Rentzepis, J. Photochem. Photobiol.,
A, 1999, 125, 79.
9 N. S. Finney, Curr. Opin. Chem. Biol., 2006, 10, 238.
10 K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill and 39 F. Chehrehasa, A. C. Meedeniya, P. Dwyer, G. Abrahamsen and
Q. Wang, Org. Lett., 2004, 6(24), 4603. A. Mackay-Sim, J. Neurosci. Methods, 2009, 177, 122.
11 T. Egawa, Y. Koide, K. Hanaoka, T. Komatsu, T. Terai and T. Nagano, 40 A. Salic and T. J. Mitchison, Proc. Natl. Acad. Sci. U. S. A., 2008,
Chem. Commun., 2011, 47, 4162. 105, 2415.
12 H. Zhang, X. Q. Zhan, Q. N. Bian and X. J. Zhang, Chem. Commun., 41 G. Lin, H. Ning, L. Banie, X. Qiu, H. Zhang, T. F. Lue and C. S. Lin,
2013, 49, 429.
Stem Cells Dev., 2012, 21, 2552.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014