4396
G.-Q. Liu et al. / Tetrahedron Letters 53 (2012) 4393–4396
4. (a) Coates, G. W.; Moore, D. R. Angew. Chem., Int. Ed. 2004, 43, 6618–6639; (b)
Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew.
Chem., Int. Ed. 2011, 50, 8510–8537.
be further increased upon addition of suitable ligands. 8-Hydroxy-
quinoline and other similar ligands showed prominent results in
rate acceleration. Another most important advantage of the current
catalyst system is its ease of operation. Both the catalyst and the
ligand were easily accessible, and all the operations could be car-
ried out in the open air without any loss of yields. Ligand acceler-
ation and steric demanding features of the current catalyst system
may shed light on the design of chiral ligands for stereoselective
hydroamination of unfunctionalized olefins.
5. Neale, R. S.; Elek, L.; Malz, R. E. J. Catal. 1972, 27, 432–441.
6. (a) Denis, J. S.; Smart, J. B.; Oliver, J. P. J. Organomet. Chem. 1972, 44, C32–C36;
(b) Denis, J. S.; Oliver, J. P.; Dolzine, T. W.; Smart, J. B. J. Organomet. Chem. 1974,
71, 315–323.
7. Penzien, J.; Su, R. Q.; Müller, T. E. J. Mol. Catal. A: Chem. 2002, 182, 489–498.
8. (a) Zulys, A.; Dochnahl, M.; Hollmann, D.; Lohnwitz, K.; Herrmann, J. S.; Roesky,
P. W.; Blechert, S. Angew. Chem., Int. Ed. 2005, 44, 7794–7798; (b) Dochnahl, M.;
Pissarek, J. W.; Blechert, S.; Lohnwitz, K.; Roesky, P. W. Chem. Commun. 2006,
3405–3407; (c) Meyer, N.; Lohnwitz, K.; Zulys, A.; Roesky, P. W.; Dochnahl, M.;
Blechert, S. Organometallics 2006, 25, 3730–3734; (d) Dochnahl, M.; Lohnwitz,
K.; Pissarek, J. W.; Biyikal, M.; Schulz, S. R.; Schon, S.; Meyer, N.; Roesky, P. W.;
Blechert, S. Chem. Eur. J. 2007, 13, 6654–6666; (e) Dochnahl, M.; Lohnwitz, K.;
Pissarek, J. W.; Roesky, P. W.; Blechert, S. Dalton Trans. 2008, 2844–2848; (f)
Dochnahl, M.; Lohnwitz, K.; Luhl, A.; Pissarek, J. W.; Biyikal, M.; Roesky, P. W.;
Blechert, S. Organometallics 2010, 29, 2637–2645.
Acknowledgment
We acknowledge the financial support from National Natural
Science Foundation of China (NSFC 20972072).
9. Liu, G.-Q.; Li, Y.-M. Terahedron Lett. 2011, 52, 7168–7170.
10. (a) Kaneti, J.; Kirby, A. J.; Koedjikov, A. H.; Pojarlieff, I. G. Org. Biomol. Chem.
2004, 2, 1098–1103; (b) Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.;
Casely, I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670–9685;
(c) Kostal, J.; Jorgensen, W. L. J. J. Am. Chem. Soc. 2010, 132, 8766–8773; (d)
Duncan, C.; Biradar, A. V.; Asefa, T. ACS Catal. 2011, 1, 736–750.
11. (a) Akermark, B.; Backvall, J. E.; Hegedus, L. S.; Zetterbe, K.; Siiralah, K.; Sjoberg,
K. J. Organomet. Chem. 1974, 72, 127–138; (b) Schaffrath, H.; Keim, W. J. Mol.
Catal. A: Chem. 2001, 168, 9–14; (c) Li, X. W.; Chianese, A. R.; Vogel, T.; Crabtree,
R. H. Org. Lett. 2005, 7, 5437–5440.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
12.
A general procedure for intramolecular hydroamination reaction: All
commercially available starting materials were purchased from Aladdin
Reagents (Beijing) and J&K Chemicals (Shanghai) and were used as received.
1. (a) DeSimone, R. W.; Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A.
Comb. Chem. High Throughput Screen. 2004, 7, 473–494; (b) Costantino, L.;
Barlocco, D. Curr. Med. Chem. 2006, 13, 65–85.
2. Trost, B. M.; Fleming, I.; Winterfeldt, E. Comprehensive Organic Synthesis:
Selectivity, Strategy and Efficiency in Modern Organic Chemistry. Heteroatom
Manipulation; Pergamon Press, 1991.
3. For a leading review, see: Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.;
Tada, M. Chem. Rev. 2008, 108, 3795–3892; For recent examples on
organocatalytic hydroamination, see: (a) Schlummer, B.; Hartwig, J. F. Org.
Lett. 2002, 4, 1471–1474; (b) Ackermann, L.; Kaspar, L. T.; Althammer, A. Org.
Biomol. Chem. 2007, 5, 1975–1978; (c) Ackermann, L.; Althammer, A. Synlett
2008, 995–998.
A
sealed tube was charged with dry 1,4-dixoane (1 mL), aminoalkene
(1.00 mmol). To this tube were added ZnI2 (0.1 mmol, 10 mol %) and 8-
hydroxyquinoline (0.1 mmol, 10 mol %). The tube was then sealed and was
heated in an oil bath (110 °C). The reaction mixture was stirred at this
temperature for 36 h and was then cooled to room temperature. The mixture
was transferred to separating funnel with the aid of CH2Cl2 (20 mL) (Caution:
care must be taken when opening the sealed tube.). The reaction mixture was
washed with saturated Na2CO3 solution, dried (MgSO4), and concentrated to
give an oil which was purified by flash chromatography to give the
corresponding product.