ORGANIC
LETTERS
2012
Vol. 14, No. 16
4074–4077
Palladium(II)-Catalyzed Enantio- and
Diastereoselective Synthesis of
Pyrrolidine Derivatives
Ranjan Jana, Tejas P. Pathak, Katrina H. Jensen,† and Matthew S. Sigman*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City,
Utah 84112, United States
Received June 20, 2012
ABSTRACT
A palladium-catalyzed enantio- and diastereoselective synthesis of pyrrolidine derivatives is described. Initial intramolecular nucleopalladation of
the tethered protected amine forms the pyrrolidine moiety and a quinone methide intermediate. A second nucleophile adds intermolecularly to
afford diverse products in high enantio- and diastereoselectivity.
The strategic generation and interception of Pd(II)-alkyl
species is an attractive approach for the development of
alkene difunctionalization reactions.1 A major challenge in
this pursuit is to suppress β-hydride elimination of the
Pd(II)-alkyl species, which would result in Heck2 or Wack-
er-type products.3 To avoid β-hydride elimination, Pd(II)-
alkyl intermediates derived from initial addition of a
nucleophile may be stabilized via π-allyl4 and π-benzyl5
formation, or the Pd(II)-alkyl may be further oxidized
prior to functionalization.6
€
(4) For examples, see: (a) Backvall, J. E.; Nystroem, J. E.; Nordberg,
R. E. J. Am. Chem. Soc. 1985, 107, 3676. (b) Bar, G. L. J.; Lloyd-Jones,
G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
(c) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129,
7496. (d) Denmark, S. E.; Werner, N. S. J. Am. Chem. Soc. 2008, 130,
16382. (e) Zhao, B.; Du, H.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132,
3523. (f) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010,
132, 10686. (g) Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge,
J. A. Chem. Rev. 2011, 111, 1846. (h) Liao, L.; Jana, R.; Urkalan, K. B.;
Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784.
(5) For examples, see: (a) Becker, Y.; Stille, J. K. J. Am. Chem. Soc.
1978, 100, 845. (b) Nettekoven, U.; Hartwig, J. F. J. Am. Chem. Soc.
2002, 124, 1166. (c) Kuwano, R.; Kondo, Y.; Matsuyama, Y. J. Am.
Chem. Soc. 2003, 125, 12104. (d) Johns, A. M.; Tye, J. W.; Hartwig, J. F.
J. Am. Chem. Soc. 2006, 128, 16010. (e) Narahashi, H.; Isao, S.;
Yamamoto, A. J. Organomet. Chem. 2008, 693, 283. (f) Torregrosa,
R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.; Tunge, J. A. J. Am.
Chem. Soc. 2010, 132, 9280. (g) Liao, L.; Sigman, M. S. J. Am. Chem.
Soc. 2010, 132, 10209. (h) Kalyani, D.; Satterfield, A. D.; Sanford, M. S.
J. Am. Chem. Soc. 2010, 132, 8419.
† Current address: Black Hills State University, 1200 University St.,
Spearfish, SD 57799.
(1) (a) Hegedus, L. S.; Darlington, W. H. J. Am. Chem. Soc. 1980,
102, 4980. (b) Chevrin, C.; Le Bras, J.; Henin, F.; Muzart, J. Synthesis
2005, 2615. (c) Thiery, E.; Chevrin, C.; Le Bras, J.; Harakat, D.; Muzart,
J. J. Org. Chem. 2007, 72, 1859. (d) Jensen, K. H.; Sigman, M. S. Org.
Biomol. Chem. 2008, 6, 4083. (e) Kalyani, D.; Sanford, M. S. J. Am.
Chem. Soc. 2008, 130, 2150. (f) Cardona, F.; Goti, A. Nat. Chem. 2009, 1,
€
269. (g) Backvall, J.-E. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Hoboken, NJ, 2004;
p 479. (h) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131,
3846. (i) Rodriguez, A.; Moran, W. J. Eur. J. Org. Chem. 2009, 1313.
(j) Urkalan, K. B.; Sigman, M. S. Angew. Chem., Int. Ed. 2009, 48, 3146.
(k) Elliot, L. D.; Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.;
Booker-Milburn, K. I. Org. Lett. 2011, 13, 728. (l) Schultz, D. M.; Wolfe,
J. P. Org. Lett. 2011, 13, 2962.
(2) For reviews of the Heck reaction, see: (a) Heck, R. F. Org. React.
1982, 27, 345. (b) Meyer, F. E. Angew. Chem., Int. Ed. 1994, 33, 2379.
(c) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
(d) Narayanan, R. Molecules 2010, 15, 2124.
(3) For reviews of the Wacker oxidation, see: (a) Feringa, B. L.
Transition Met. Org. Synth. 1998, 2, 307. (b) Punniyamurthy, T.;
Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329. (c) Cornell, C. N.;
Sigman, M. S. Inorg. Chem. 2007, 46, 1903. (d) Anderson, B. J.; Keith,
J. A.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 11872.
€
~
(6) (a) Streuff, J.; Hovelmann, C. H.; Nieger, M.; Muniz, K. J. Am.
Chem. Soc. 2005, 127, 14586. (b) Alexanian, E. J.; Lee, C.; Sorensen, E. J.
J. Am. Chem. Soc. 2005, 127, 7690. (c) Liu, G.; Stahl, S. S. J. Am. Chem.
Soc. 2006, 128, 7179. (d) Desai, L. V.; Sanford, M. S. Angew. Chem., Int.
Ed. 2007, 46, 5737. (e) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 5836. (f) Li, Y.; Song, D.;
~
Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962. (g) Muniz, K. Angew.
Chem., Int. Ed. 2009, 48, 9412. (h) Rosewall, C. F.; Sibbald, P. A.; Liskin,
D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488. (i) Qiu, S.; Xu,
T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(j) Park, C. P.; Lee, J. H.; Yoo, K. S.; Jung, K. W. Org. Lett. 2010, 12, 2450.
r
10.1021/ol3016989
Published on Web 08/08/2012
2012 American Chemical Society