Journal of the American Chemical Society
Page 4 of 12
(21)
(22)
(23)
(24)
(25)
Véliz, E. A.; Beal, P. A. Tetrahedron Lett. 2006, 47,
3153–3156.
But, T. Y.; Toy, P. H. J. Am. Chem. Soc. 2006, 128, 9636-
9637.
Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem.
Int. Ed. 2013, 52, 4613 -4617.
O'Brien, C. J. Catalytic Wittig and Mitsunobu Reactions.
WO 2010/118042 A2, 2010
O'Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S.
R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.;
Kang, L. J.; Przeworski, K. C. Chem. Eur. J. 2013, 19,
15281-15289.
O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.;
Doonan, B. J. Chem. Eur. J. 2013, 19, 5854-5858.
Torii, S.; Sayo, N.; Tanaka, H. Chem. Lett. 1980, 1980,
695-698.
Ueki, M.; Maruyama, H.; Mukaiyama, T. Bull. Chem.
Soc. Jpn. 1971, 44, 1108-1111.
Taniguchi, N. Eur. J. Org. Chem. 2010, 2670-2673.
Villalobos, J. M. PhD, Emory University, 2007.
Wang, Z.; Kuninobu, Y.; Kanai, M. J. Org. Chem. 2013,
78, 7337-7342.
Henke, A.; Srogl, J. J. Org. Chem. 2008, 73, 7783-7784.
Some irreproducibility in full conversion of the
carboxylic acid to the amide was traced, in part, to the
rapid hydrolysis of the effective reducing agent (EtO)3P
to HP(O)(OEt)2 in the presence of H2O,(see Westheimer,
F. H.; Huang, S.; Covitz, F. J. Am. Chem. Soc. 1988, 110,
181-185). Pre-dried solvents, a slight excess of the
(EtO)3P, and activated 4 Å molecular sieves improved
the reaction outcome.
Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S.
J. Am. Chem. Soc. 2010, 132, 15116–15119.
For the preparation of CuI 3-methylsalicylate (CuMeSal),
see the Supporting Information to Savarin, C.; Srogl, J.;
Liebeskind, L. S. Org. Lett. 2001, 3, 91-93.
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
(26)
(27)
(28)
ACKNOWLEDGMENT
(29)
(30)
(31)
REFERENCES
(32)
(33)
(1)
(2)
(3)
(4)
Chen, Z.; Zeng, H.; Girard, S. A.; Wang, F.; Chen, N.;
Li, C. J. Angew. Chem. Int. Ed. 2015, 54, 14487-14491.
An, J.; Denton, R. M.; Lambert, T. H.; Nacsa, E. D. Org
Biomol Chem 2014, 12, 2993-3003.
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H.
Chem. Soc. Rev. 2014, 43, 2714-2742.
Sustainable Catalysis. Challenges and Practices for the
Pharmaceutical and Fine Chemical Industries; Dunn, P.
J.; Hii, K. K. M.; Krische, M. J.; Williams, M. T., Eds.;
John Wiley and Sons: Hoboken, New Jersey, 2013.
Lanigan, R. M.; Sheppard, T. D. Eur. J. Org. Chem.
2013, 2013, 7453-7465.
Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013,
42, 1121-1146.
Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J.
Adv. Synth. Catal. 2007, 349, 1555-1575.
Gunanathan, C.; Milstein, D. Science 2013, 341,
1229712.
Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. Dalton
Trans 2009, 753-762.
Charville, H.; Jackson, D.; Hodges, G.; Whiting, A.
Chem. Commun. 2010, 46, 1813–1823.
(34)
(35)
(5)
(6)
(7)
(8)
(9)
(10)
(36)
(37)
(38)
Goodgame, D. M. L.; Goodgame, M.; Rayner-Canham,
G. W. Inorg. Chim. Acta 1969, 3, 406-410.
Shimizu, M.; Sugano, Y.; Konakahara, T.; Gama, Y.;
Shibuya, I. Tetrahedron 2002, 58, 3779-3783.
Pietka-Ottlik, M.; Potaczek, P.; Piasecki, E.;
Mlochowski, J. Molecules [Electronic Publication]
2010, 15, 8214-8228.
Yang, B.; Niu, X.; Huang, Z.; Zhao, C.; Liu, Y.; Ma, C.
Tetrahedron 2013, 69, 8250-8254.
Kamigata, N.; Iizuka, H.; Kobayashi, M. Bull. Chem.
Soc. Jpn. 1986, 59, 1601-1602.
(39)
(40)
(41)
(42)
(11)
(12)
(13)
Mukaiyama, T. Angew. Chem. Int. Ed. 1976, 15, 94-103.
Hughes, D. Organic Reactions 1992, 42, 335-656.
But, T. Y.; Toy, P. H. Chem. Asian J. 2007, 2, 1340-
1355.
Chen, F. J.; Liao, G.; Li, X.; Wu, J.; Shi, B. F. Org. Lett.
2014, 16, 5644-5647.
(14)
(15)
(16)
(17)
(18)
Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.;
Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551-2651.
Mukaiyama, T.; Kuroda, K.; Maruyama, Y. Heterocycles
2010, 80, 63.
Mukaiyama, T. Angew. Chem. Int. Ed. 2004, 43, 5590-
5614.
Luo, Q.-L.; Lv, L.; Li, Y.; Tan, J.-P.; Nan, W.; Hui, Q.
Eur. J. Org. Chem. 2011, 2011, 6916-6922.
Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey,
G. R.; Johnnie L. Leazer, J.; Linderman, R. J.; Lorenz,
K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaksh, A.;
Zhang, T. Y. Green Chem. 2007, 9, 411-420.
A dependence of the reaction pathway on the nature of
the BIT and the reaction solvent was noticed. Thus, N-
alkyl substituted BITs rapidly produce the anticipated S-
acylthiosalicylamide thioesters, while N-aryl substituted
BITs were problematic, particularly in polar solvents like
DMF. 31P NMR spectroscopy traced the difference to a
very rapid, direct deoxygenation of the N-aryl BITs by
triethylphosphite, particularly in polar solvents. Full
details of the direct deoxygenation of BITs by
triethylphosphite will be disclosed separately.
Denton and Lambert describe the catalytic nucleophilic
substitution of alcohols in reference #2.
(43)
(20)
Ueki, M.; Shishikura, T.; Hayashida, A.; Mukaiyama, T.
Chem. Lett. 1973, 1973, 733-736.
ACS Paragon Plus Environment