4350
W. Chen et al. / Tetrahedron Letters 53 (2012) 4347–4350
Harutyunyan, S.; Hartog, T.; Geurts, K.; Minnaard, A.; Feringa, B. Chem. Rev.
2008, 108, 2824; (h) Alexakis, A.; Bäckvall, J.; Krause, N.; Diéguez, M. Chem. Rev.
2008, 108, 2796.
reaction conditions and the coupling of (E)-4-(4-bromophenyl)but-
3-en-2-one (2g) with 1a gave the product in 79% yield (entry 7).
The position of the substituents on the phenyl ring affects the reac-
tion yield significantly. The reaction yields decreased to 55% and
60% when 2h and 2i were used as substrates (entries 8 and 9).
Notably, the addition of cinnamaldehyde (2j) with 1a afforded
the desired product in 64% yield (entry 10). Aryl substituted enone
substrate (E)-chalcone (2k) also smoothly reacted with 1a and gave
the desired product in 85% yield (entry 11).
The reaction results of various arylsulfinic acid sodium salts
with benzylideneacetone 2a are presented in Table 3. A series of
functional groups including tert-butyl, methoxy, fluoro, chloro,
and bromo were tolerated under the optimal reaction conditions,
and the desired products were obtained in moderate to good yields
(entries 2–6). More bulky substrates such as 2-naphthylsulfinic
acid sodium salt (1h) also efficiently reacted with 2a and gave
the desired product in 89% yield (entry 7).
2. (a) Alexakis, A. In Beller, M., Bolm, C., Eds.; Transition Metals for Organic
Synthesis; Wiley-VCH: Weinheim, 1998; Vol. 4,. Chapter 3.10 (b) Lipshutz, B. H.
In Organometallics in Synthesis; Schlosser, M., Ed.; Wiley: New York, 1994.
3. (a) Itooka, R.; Iguchi, Y.; Miyaura, N. Chem. Lett. 2001, 722; (b) Itooka, R.; Iguchi,
Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000; (c) Duursma, A.; Hoen, R.;
Schuppan, J.; Hulst, R.; Minnaard, A.; Feringa, B. Org. Lett. 2003, 5, 3111; (d) He,
P.; Lu, Y.; Dong, C.; Hu, Q. S. Org. Lett. 2007, 9, 343; (e) Heibig, S.; Sauer, S.;
Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Adv. Synth. Catal. 2007, 349, 2331; (f)
Zou, G.; Guo, J.; Wang, Z.; Tang, J. Dalton Trans. 2007, 3055; (g) Liao, Y.; Xing, C.;
He, P.; Hu, Q. S. Org. Lett. 2008, 10, 2509; (h) Nishimura, T.; Nagaosa, M.;
Hayashi, T. Chem. Lett. 2008, 37, 860; (i) Liao, Y.; Xing, C.; Israel, M.; Hu, Q. S.
Org. Lett. 2011, 13, 2058; (j) Liao, Y.; Hu, Q. S. J. Org. Chem. 2011, 76, 7602.
4. (a) Oi, S.; Honma, Y.; Inoue, Y. Org. Lett. 2002, 4, 667; (b) Koike, T.; Du, X.; Mori,
A.; Osakada, K. Synlett 2002, 301; (c) Huang, T.; Li, C. J. Chem. Commun. 2001,
2348; (d) Mori, A.; Danda, Y.; Fujii, T.; Hirabayashi, K.; Osakada, K. J. Am. Chem.
Soc. 2001, 123, 10774.
5. (a) Ohe, T.; Wakita, T.; Motofusa, S.; Cho, C.; Ohe, K.; Uemura, S. Bull. Chem. Soc.
Jpn. 2000, 73, 2149; (b) Oi, S.; Moro, M.; Ono, S.; Inoue, Y. Chem. Lett. 1998, 83;
(c) Oi, S.; Moro, M.; Ito, H.; Honma, Y.; Miyano, S.; Inoue, Y. Tetrahedron 2002,
58, 91.
6. Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829. and references therein.
7. (a) Sun, Z. M.; Zhao, P. J. Angew. Chem., Int. Ed. 2009, 48, 6726; (b) Sun, Z.; Zhang,
J.; Zhao, P. Org. Lett. 2010, 12, 992.
A plausible mechanism to rationalize this transformation is
illustrated in Scheme 2. Similar to the Pd(II)-catalyzed conjugate
addition of arylboronic acids to
a,b-unsaturated carbonyl com-
8. For a recent reviews, see: (a) Goossen, L. J.; Ridríguez, N.; Goossen, K. Angew.
Chem., Int. Ed 2008, 47, 3100; b Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev 2011,
40, 5030; For selected examples on decarboxylative cross-coupling reactions,
see: (c) Goossen, L. J.; Deng, G. J.; Levy, L. M. Science 2006, 313, 662; (d)
Goossen, L. J.; Rodriguez, N.; Bettina, M.; Linder, C.; Deng, G. J.; Levy, L. M. J. Am.
Chem. Soc. 2007, 129, 4824; (e) Forgione, P.; Brochu, M.; St-Onge, M.; Thesen,
K.; Bailey, M.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350; For other
examples on decarboxylative addition to imines and carbonyls, see: (f) Lindh,
J.; Sjöberg, P.; Larhed, M. Angew. Chem., Int. Ed. 2010, 49, 7733; (g) Luo, Y.; Wu, J.
Chem. Commun. 2010, 46, 3785; (h) Blaquiere, N.; Shore, D.; Rousseaux, S.;
Fagnou, K. J. Org. Chem. 2009, 74, 6190.
9. (a) Patai, S., Ed.The Chemistry of Sulfinic Acids, Esters, and Their Derivatives;
Wiley: NY, 1990; (b) Patai, S., Rappoport, Z., Eds.The Chemistry of Sulphonic
Acids, Esters, and Their Derivatives; Wiley: Chichester, NY, 1991; (c) Page, P.
Organosulfur Chemistry: Stereochemical Aspects; Academic Press Inc.: San Diego,
1998; (d) Simpkins, N. Sulfones in Organic Synthesis; Pergamon Press: Oxford,
1993.
pounds, the proposed mechanism involves the following 5 steps:
(1) coordination of aromatic sulfinic acid sodium salts to palla-
dium(II) to give complex I; (2) desulfitative reaction of the sulfinic
acid to generate the aryl-palladium complex II; (3) coordination of
the ketone group to form complex III; (4) migratory insertion of
the C@C bond with aryl-palladium complex to give complex IV;
(5) protonation of IV by the acid to give the final addition product
and a palladium(II) species.
In summary, we have demonstrated a palladium-catalyzed des-
ulfitative conjugate addition of sodium sulfinates with a,b-unsatu-
rated ketones (aldehydes). Various aromatic sulfinic acid sodium
salts with or without substituents selectively added with
a,b-unsaturated ketones and afforded the adducts in good yields.
10. Dubbaka, S.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674.
11. For recent examples of sulfonylation using sulfinic acids or sodium sulfinates,
see: (a) Sandrinelli, F.; Perrio, S.; Beslin, P. Org. Lett. 1999, 1, 1177; (b) Yang, W.;
Berthelette, C. Tetrahedron Lett. 2002, 43, 4537; (c) Cacchi, S.; Fabrizi, G.;
Goggiamani, A.; Parisi, L.; Berning, R. J. Org. Chem. 2004, 69, 5608; (d) Zhu, W.;
Ma, D. J. Org. Chem. 2005, 70, 2696; (e) Martin, C.; Sandrinelli, F.; Perrio, C.;
Perrio, S.; Lasne, M. J. Org. Chem. 2006, 71, 210; (f) Guan, Z.; Zuo, W.; Zhao, L.;
Ren, Z.; Liang, Y. Synthesis 2007, 1465; (g) Drabowicz, J.; Kaiatkowska, M.;
Kielbasinski, P. Synthesis 2008, 3563; (h) Sreedhar, B.; Reddy, M.; Reddy, P.
Synlett 2008, 1949; (i) Kim, H.; Kasper, A.; Park, Y.; Wooten, C.; Hong, J.; Moon,
E.; Dewhirst, M. Org. Lett. 2009, 11, 89; (j) Varela-Álvavez, A.; Markovic´, D.;
Vogel, P.; Sordo, J. J. Am. Chem. Soc. 2009, 131, 9547; (k) Liu, C.; Li, M.; Cheng, D.;
Yang, C.; Tian, S. Org. Lett. 2009, 11, 2543; (l) Reddy, M.; Reddy, P.; Sreedhar, B.
Adv. Synth. Catal. 1861, 2010, 352; (m) Li, Y.; Cheng, K.; Lu, X.; Sun, J. Adv. Synth.
Catal. 1876, 2010, 352; (n) Ueda, M.; Hartwig, J. F. Org. Lett. 2010, 12, 92; (o)
Maloney, K.; Kuethe, J.; Linn, K. Org. Lett. 2011, 13, 102.
Unlike the decarboxylative coupling reaction, no electron-
withdrawing or donating group ortho to the sulfinic acid group
was necessary to ensure the desulfitative addition. Functional
groups such as methyl, methoxy, fluoro, chloro, and bromo were
all well tolerated under the optimized reaction conditions. The
scope, mechanism, and synthetic applications of this reaction in
asymmetric version are under investigation.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (21172185, 20902076), the Hunan Provincial Nat-
ural Science Foundation of China (11JJ1003), the New Century
Excellent Talents in University from Ministry of Education of China
(NCET-11-0974) and the Scientific Research Foundation for Re-
turned Scholars, Ministry of Education of China (2011-1568).
12. For early investigations on desulfitative reaction using sulfinic acid (salt), see:
(a) Garves, K. J. Org. Chem. 1970, 35, 3273; (b) Selke, R.; Thiele, W. J. Prakt. Chem.
1971, 313, 875; (c) Wenkert, E.; Ferreira, T.; Michelotti, E. J. Chem. Soc., Chem.
Comm. 1979, 637.
13. For desulfitative biaryl synthesis in high yields, see: Sato, K.; Okoshi, T. Patent,
U.S. 5,159,082, 1992.
14. (a) Zhou, X.; Luo, J.; Liu, J.; Peng, S.; Deng, G. Org. Lett. 2011, 13, 1432; (b) Wang,
G.; Miao, T. Chem. Eur. J. 2011, 17, 5787.
15. (a) Liu, J.; Zhou, X.; Rao, H.; Xiao, F.; Li, C.; Deng, G. Chem. Eur. J. 2011, 17, 7996;
(b) Yao, H.; Yang, L.; Shuai, Q.; Li, C. Adv. Synth. Catal. 2011, 353, 1701; (c) Miao,
T.; Wang, G. Chem. Commun. 2011, 47, 9501; (d) Behrends, M.; Sävmarker, J.;
Sjöberg, P.; Larhed, M. ACS Catal. 2011, 1, 1455.
16. (a) Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G. J. Org. Biomol. Chem. 2011, 9, 7675;
(b) Wu, M.; Luo, J.; Xiao, F.; Zhang, S.; Deng, G. J.; Luo, H. A. Adv. Synth. Catal.
2012, 354, 335; (c) Liu, B.; Guo, Q.; Cheng, Y.; Lan, J.; You, J. S. Chem. Eur. J. 2011,
17, 13415; (d) Wang, M.; Li, D.; Zhou, W.; Wang, L. Tetrahedron 2012, 68, 1926.
17. For a systematic investigation on reactivity comparison of desulfination and
decarboxylation, see: Sraj, L.; Khairallah, G.; Silva, G.; O’Hair, R. Organometallics
2012, 31, 1801.
18. During our preparation of this manuscript, Duan and his co-workers disclosed
a palladium-catalyzed desulfitative conjugate addition reaction using H2SO4 as
acid: Wang, H.; Li, Y.; Zhang, R.; Jin, K.; Zhao, D.; Duan, C. Y. J. Org. Chem 2012,
77, 4849.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. For reviews, see: (a) Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Permagon Press: Oxford, 1992; (b) Schmalz, H. G. In Comprehensive
Organic Synthesis; Trost, B., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4,.
Chapter 1.5 (c) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771; (d) Sibi,
M.; Manyem, S. Tetrahedron 2000, 56, 8033; (e) Krause, N.; Hoffmann-Röder, A.
Synthesis 2001, 171; (f) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169; (g)