6648
T. Takeichi et al. / Tetrahedron Letters 52 (2011) 6646–6648
process tolerated a variety of substrates with high chemoselectiv-
ity. Further efforts will be focused on the development of asym-
metric silylation of 1,2-diols in our research group.
OH
OH
OTES
OH
Me2SnCl2 (10 mol %)
+
TESCl
(1.5 equiv)
2a
Ph
Ph
Et3N (1.5 equiv)
CH2Cl2
1q
3qa
85% yield
rt, 1 h
Acknowledgments
OH
OH
OTES
Me2SnCl2 (10 mol %)
+
TESCl
(1.5 equiv)
2a
This research was supported by Grant-in-Aid for Scientific Re-
search on Innovative Areas from The Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT), Grant-in-Aid for
Young Scientists (B) from The Japan Society for the Promotion of
Science (JSPS).
OH
Et3N (1.5 equiv)
CH2Cl2
Me
Me
1r
3ra
87% yield
rt, 1 h
Scheme 3. Silylation of unsymmetrical 1,2- and 1,3-diols.
References and notes
Table 3
Scope of silylating reagentsa
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; John
Wiley & Sons: New York, 2006.
2. (a) Clarke, P. A.; Holton, R. A.; Kayaleh, N. E. Tetrahedron Lett. 2000, 41, 2687–
2690; (b) Clarke, P. A.; Kayaleh, N. E.; Smith, M. A.; Baker, J. R.; Bird, S. J.; Chan,
C. J. Org. Chem. 2002, 67, 5226–5231; (c) Müller, C. E.; Zell, D.; Schreiner, P. R.
Chem. Eur. J. 2009, 15, 9647–9650; (d) Yoshida, K.; Furuta, T.; Kawabata, T.
Angew. Chem., Int. Ed. 2011, 50, 4888–4892; (e) Lee, D.; Taylor, M. S. J. Am. Chem.
Soc. 2011, 133, 3724–3727.
OH
OH
cat. Me2SnCl2
+
Cl−SiMe2R
Et3N (1.5 equiv)
CH2Cl2
OH
OSiMe2R
3
1a
2
rt, 1 h
3. (a) Oriyama, T.; Imai, K.; Sano, T.; Hosoya, T. Tetrahedron Lett. 1998, 39, 3529–
3532; (b) Iwasaki, F.; Maki, T.; Onomura, O.; Nakashima, W.; Matsumura, Y. J.
Org. Chem. 2000, 65, 996–1002; (c) Mazet, C.; Kohler, V.; Pfaltz, A. Angew. Chem.,
Int. Ed. 2005, 44, 4888–4891; (d) Nakamura, D.; Kakiuchi, K.; Koga, K.; Shirai, R.
Org. Lett. 2006, 8, 6139–6142; (e) Arai, T.; Mizukami, T.; Yanagisawa, A. Org.
Lett. 2007, 9, 1145–1147.
Entry
1
2
Product
3
Yieldb (%)
OH
Me
2b
3ab
91
83
79
89
87
84
82
99
O Si i-Pr
Me
4. Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2007,
48, 7605–7609.
OH
Me
5. To avoid overacylation, excess amounts of diols have been often used: (a)
Takahashi, S.; Katagiri, T.; Uneyama, K. Chem. Commun. 2005, 3658–3660; (b)
Iwashita, M.; Makide, K.; Nonomura, T.; Misumi, Y.; Otani, Y.; Ishida, M.;
Taguchi, R.; Tsujimoto, M.; Aoki, J.; Arai, H.; Ohwada, T. J. Med. Chem. 2009, 52,
5837–5863; (c) Giesbrecht, H. E.; Knight, B. J.; Tanguileg, N. R.; Emerso, C. R.;
Blakemore, P. R. Synlett 2010, 374–378.
6. Review: (a) Crouch, R. D. Tetrahedron 2004, 60, 5833–5871; Recent examples:
(b) Yeom, C.-E.; Kim, Y. J.; Lee, S. Y.; Shin, Y. J.; Kim, B. M. Tetrahedron 2005, 61,
12227–12237; (c) Yang, Y.-Q.; Cui, J.-R.; Zhu, L.-G.; Sun, Y.-P.; Wu, Y. Synlett
2006, 1260–1262; (d) Yeom, C.-E.; Kim, H. W.; Lee, S. Y.; Kim, B. M. Synlett
2007, 146–150; (e) Wang, B.; Sun, H.-X.; Sun, Z.-H. J. Org. Chem. 2009, 74, 1781–
1784; (f) Fustero, S.; Sancho, A. G.; Aceña, J. L.; Sanz-Cervera, J. F. J. Org. Chem.
2009, 74, 6398–6401.
7. (a) Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006, 443, 67–70;
(b) Zhao, Y.; Mitra, A. W.; Hoveyda, A. H.; Snapper, M. L. Angew. Chem., Int. Ed.
2007, 46, 8471–8474; (c) Rodrigo, J. M.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L.
Org. Lett. 2011, 13, 3778–3781.
8. Sun, X.; Worthy, A. D.; Tan, K. L. Angew. Chem., Int. Ed. 2011, 50, 1–6.
9. Yu, C.; Liu, B.; Hu, L. Tetrahedron Lett. 2000, 41, 4281–4285.
10. (a) Maki, T.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 1998, 39, 5601–5604;
(b) Iwasaki, F.; Maki, T.; Nakashima, W.; Onomura, O.; Matsumura, Y. Org. Lett.
1999, 1, 969–972; (c) Demizu, Y.; Kubo, Y.; Miyoshi, H.; Maki, T.; Matsumura,
Y.; Moriyama, N.; Onomura, O. Org. Lett. 2008, 10, 5075–5077.
11. (a) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003,
125, 2052–2053; (b) Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O.
Tetrahedron Lett. 2004, 45, 9131–9134; (c) Matsumoto, K.; Mitsuda, M.;
Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006,
47, 8453–8456.
12. Organotins are known to be toxic at relatively low levels of exposure, not only
to marine invertebrates but also for mammals and other animals. The most
toxic organotin compounds are the trialkyltin compounds, with the ethyl
derivative in each group being reported as the most toxic. See: (a) Poller, R. C.
The Chemistry of Organotin Compounds; Logos Press: London, 1970; (b) Nath, M.
Appl. Organometal. Chem. 2008, 22, 598–612.
2
2c
2d
2e
2f
3ac
3ad
3ae
3af
3ag
3ah
3ai
O Si
Me
OH
Me
3
O Si
Me
OH
Me
4c
5
O Si Ph
Me
OH
Me
O Si Bn
Me
OH
Me
6c
7
2g
2h
2p
O Si
Me
OH
Me
O Si
Me
OH
Me
O Si
Me
3
Ph
Cl
8
3
CN
a
Reaction conditions: diol 1a (0.5 mmol), silylating reagent
2 (1.2 equiv),
13. Representative procedure. To the mixture of diol 1a (0.5 mmol), triethylamine
(1.5 equiv), and dimethyltin dichloride (10 mol %) in CH2Cl2 (3 mL) was added
TESCl 2a (1.5 equiv). The mixture was stirred for 1 h at rt. After water was
added, the resulting mixture was extracted with ethyl acetate and the
combined organic layers were dried with anhydrous magnesium sulfate.
Me2SnCl2 (10 mol %), Et3N (1.5 equiv), CH2Cl2 (3 mL), rt, 1 h.
b
Isolated yield.
c
Silylating reagent 2 (1.5 equiv) was used.
After filtration, the volatile components were removed with
evaporator. Purification of the crude product through silica gel column
chromatography gave 3aa in 99% yield.
a rotary
ceeded with high yields (entries 2 and 3). The monosilylation using
reagents with phenyl group had no difficulty, leading to excellent
results (entries 4–6). The silylating reagents bearing reactive moi-
eties, such as chlorine and cyano group, reacted efficiently with no
side product (entries 7 and 8).
14. In this case, cyclooctanol was recovered in 99%.
15. By using imidazole (1.5 equiv) without Me2SnCl2, the monosilylated product
3aa and the silylated mono-ol were obtained in 43% and 50% yields,
respectively.
16. The reaction of 1a with tert-butyldimethylsilyl chloride (TBSCl) did not
proceed to recover 1a under the reaction conditions.
In summary, we successfully developed the first selective
monosilylation of 1,2-diols catalyzed by metal complexes. This