Journal of Chemical Information and Modeling
Article
P.; Jaiswal, B. S.; Seshagiri, S.; Koeppen, H.; Belvin, M.; Friedman, L.
S.; Malek, S. RAF inhibitors prime wild-type RAF to activate the
MAPK pathway and enhance growth. Nature 2010, 464, 431−5.
(12) Rebocho, A. P.; Marais, R. New insight puts CRAF in sight as a
therapeutic target. Cancer Discovery 2011, 1, 98−9.
(13) Mooz, J.; Oberoi-Khanuja, T. K.; Harms, G. S.; Wang, W.;
Jaiswal, B. S.; Seshagiri, S.; Tikkanen, R.; Rajalingam, K. Dimerization
of the kinase ARAF promotes MAPK pathway activation and cell
migration. Sci. Signaling 2014, 7, ra73.
ACKNOWLEDGMENTS
■
This work was financially supported by National Natural
Science Foundation of China (No. 21572273/B020601). A
Project Funded by the Priority Academic Program Develop-
ment of Jiangsu Higher Education Institutions and College
Student Innovation Project for the R&D of Novel Drugs (No.
J1030830). We also express our gratitude to Dr. Xiazhong Ren,
Dr. Huajun Yang, Dr. Chunlan Dong (Crown Bioscience
Corporation), and Dr. Jamie Planck (RBC, Pennsylvania, USA)
for their helpful support in biological evaluation.
(14) Ribas, A.; Flaherty, K. T. BRAF targeted therapy changes the
treatment paradigm in melanoma. Nat. Rev. Clin. Oncol. 2011, 8, 426−
33.
(15) Arora, R.; Di Michele, M.; Stes, E.; Vandermarliere, E.; Martens,
L.; Gevaert, K.; Van Heerde, E.; Linders, J. T.; Brehmer, D.; Jacoby, E.;
Bonnet, P. Structural investigation of B-Raf paradox breaker and
inducer inhibitors. J. Med. Chem. 2015, 58, 1818−31.
REFERENCES
■
(1) Caronia, L. M.; Phay, J. E.; Shah, M. H. Role of BRAF in thyroid
oncogenesis. Clin. Cancer Res. 2011, 17, 7511−7.
(16) Klein, C. A. Selection and adaptation during metastatic cancer
progression. Nature 2013, 501, 365−372.
(2) Rebocho, A. P.; Marais, R. ARAF acts as a scaffold to stabilize
BRAF:CRAF heterodimers. Oncogene 2013, 32, 3207−3212.
(3) Wan, P. T. C.; Garnett, M. J.; Roe, S. M.; Lee, S.; Niculescu-
Duvaz, D.; Good, V. M.; Project, C. G.; Jones, C. M.; Marshall, C. J.;
Springer, C. J.; Barford, D.; Marais, R. Mechanism of activation of the
RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell
2004, 116, 855−867.
(17) Huang, J.; Hu, W.; Bottsford-Miller, J.; Liu, T.; Han, H. D.;
Zand, B.; Pradeep, S.; Roh, J. W.; Thanapprapasr, D.; Dalton, H. J.;
Pecot, C. V.; Rupaimoole, R.; Lu, C.; Fellman, B.; Urbauer, D.; Kang,
Y.; Jennings, N. B.; Huang, L.; Deavers, M. T.; Broaddus, R.; Coleman,
R. L.; Sood, A. K. Cross-talk between EphA2 and BRaf/CRaf is a key
determinant of response to dasatinib. Clin. Cancer Res. 2014, 20,
1846−55.
(18) Macrae, M.; Neve, R. M.; Rodriguez-Viciana, P.; Haqq, C.; Yeh,
J.; Chen, C.; Gray, J. W.; McCormick, F. A conditional feedback loop
regulates Ras activity through EphA2. Cancer Cell 2005, 8, 111−8.
(19) Lo, R. S. Receptor tyrosine kinases in cancer escape from BRAF
inhibitors. Cell Res. 2012, 22, 945−7.
(20) Yadav, V.; Zhang, X.; Liu, J.; Estrem, S.; Li, S.; Gong, X. Q.;
Buchanan, S.; Henry, J. R.; Starling, J. J.; Peng, S. B. Reactivation of
mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3
(FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF
V600E mutant melanoma. J. Biol. Chem. 2012, 287, 28087−98.
(21) Fedorenko, I. V.; Paraiso, K. H.; Smalley, K. S. Acquired and
intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma.
Biochem. Pharmacol. 2011, 82, 201−9.
(4) Wang, X.; Kim, J. Conformation-specific effects of Raf kinase
inhibitors. J. Med. Chem. 2012, 55, 7332−41.
(5) Backes, A.; Zech, B.; Felber, B.; Klebl, B.; Muller, G. Small-
molecule inhibitors binding to protein kinase. Part II: the novel
pharmacophore approach of type II and type III inhibition. Expert
Opin. Drug Discovery 2008, 3, 1427−49.
(6) Henry, J. R.; Kaufman, M. D.; Peng, S. B.; Ahn, Y. M.; Caldwell,
T. M.; Vogeti, L.; Telikepalli, H.; Lu, W. P.; Hood, M. M.; Rutkoski, T.
J.; Smith, B. D.; Vogeti, S.; Miller, D.; Wise, S. C.; Chun, L.; Zhang, X.;
Zhang, Y.; Kays, L.; Hipskind, P. A.; Wrobleski, A. D.; Lobb, K. L.;
Clay, J. M.; Cohen, J. D.; Walgren, J. L.; McCann, D.; Patel, P.;
Clawson, D. K.; Guo, S.; Manglicmot, D.; Groshong, C.; Logan, C.;
Starling, J. J.; Flynn, D. L. Discovery of 1-(3,3-dimethylbutyl)-3-(2-
fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido[2,3- d]-
pyrimidin-6-yl)phenyl)urea (LY3009120) as a pan-RAF inhibitor
with minimal paradoxical activation and activity against BRAF or
RAS mutant tumor cells. J. Med. Chem. 2015, 58, 4165−79.
(7) McArthur, G. A.; Chapman, P. B.; Robert, C.; Larkin, J.; Haanen,
J. B.; Dummer, R.; Ribas, A.; Hogg, D.; Hamid, O.; Ascierto, P. A.;
Garbe, C.; Testori, A.; Maio, M.; Lorigan, P.; Lebbe,
Schadendorf, D.; O’Day, S. J.; Kirkwood, J. M.; Eggermont, A. M.;
Dreno, B.; Sosman, J. A.; Flaherty, K. T.; Yin, M.; Caro, I.; Cheng, S.;
Trunzer, K.; Hauschild, A. Safety and efficacy of vemurafenib in
BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-
3): extended follow-up of a phase 3, randomised, open-label study.
Lancet Oncol. 2014, 15, 323−332.
(8) Flaherty, K. T.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthur, G.
A.; Sosman, J. A.; O’Dwyer, P. J.; Lee, R. J.; Grippo, J. F.; Nolop, K.;
Chapman, P. B. Inhibition of mutated, activated BRAF in metastatic
melanoma. N. Engl. J. Med. 2010, 363, 809−819.
(9) Sosman, J. A.; Kim, K. B.; Schuchter, L.; Gonzalez, R.; Pavlick, A.
C.; Weber, J. S.; McArthur, G. A.; Hutson, T. E.; Moschos, S. J.;
Flaherty, K. T.; Hersey, P.; Kefford, R.; Lawrence, D.; Puzanov, I.;
Lewis, K. D.; Amaravadi, R. K.; Chmielowski, B.; Lawrence, H. J.; Shyr,
Y.; Ye, F.; Li, J.; Nolop, K. B.; Lee, R. J.; Joe, A. K.; Ribas, A. Survival in
BRAF V600−mutant advanced melanoma treated with vemurafenib.
N. Engl. J. Med. 2012, 366, 707−714.
(22) Spagnolo, F.; Ghiorzo, P.; Queirolo, P. Overcoming resistance
to BRAF inhibition in BRAF-mutated metastatic melanoma.
Oncotarget 2014, 5, 10206−10221.
(23) Schrodinger, L. Schrodinger software suite; Schrodinger, LLC:
̈
́
C.; Jouary, T.;
New York 2011.
(24) Ngan, C. H.; Bohnuud, T.; Mottarella, S. E.; Beglov, D.; Villar,
E. A.; Hall, D. R.; Kozakov, D.; Vajda, S. FTMAP: extended protein
mapping with user-selected probe molecules. Nucleic Acids Res. 2012,
40, W271−5.
(25) Zhang, Y.; Yang, S.; Jiao, Y.; Liu, H.; Yuan, H.; Lu, S.; Ran, T.;
Yao, S.; Ke, Z.; Xu, J.; Xiong, X.; Chen, Y.; Lu, T. An integrated virtual
screening approach for VEGFR-2 inhibitors. J. Chem. Inf. Model. 2013,
53, 3163−3177.
(26) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.
E.; Berendsen, H. J. GROMACS: fast, flexible, and free. J. Comput.
Chem. 2005, 26, 1701−18.
(27) Duan, Y.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.;
Yang, R.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P.; Wu, C.;
Cieplak, P. A point-charge force field for molecular mechanicssimu-
lations of proteins based on condensed-phase quantum mechanical
calculations. J. Comput. Chem. 2003, 24, 1999−2012.
(28) Jorgensen, W. L. Quantum and statistical mechanical studies of
liquids. 10. Transferable intermolecular potential functions for water,
alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc.
1981, 103, 335−340.
(29) Hess, B. P-LINCS: a parallel linear constraint solver for
molecular simulation. J. Chem. Theory Comput. 2008, 4, 116−122.
(30) Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke,
H.; Roitberg, A. E. MMPBSA.py: an efficient program for end-state
free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314−3321.
́
(10) Sanchez-Laorden, B.; Viros, A.; Girotti, M. R.; Pedersen, M.;
Saturno, G.; Zambon, A.; Niculescu-Duvaz, D.; Turajlic, S.; Hayes, A.;
Gore, M.; Larkin, J.; Lorigan, P.; Cook, M.; Springer, C.; Marais, R.
BRAF inhibitors induce metastasis in RAS mutant or inhibitor-
resistant melanoma cells by reactivating MEK and ERK signaling. Sci.
Signaling 2014, 7, ra30.
(11) Hatzivassiliou, G.; Song, K.; Yen, I.; Brandhuber, B. J.;
Anderson, D. J.; Alvarado, R.; Ludlam, M. J.; Stokoe, D.; Gloor, S.
L.; Vigers, G.; Morales, T.; Aliagas, I.; Liu, B.; Sideris, S.; Hoeflich, K.
M
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX