Page 5 of 6
ACS Medicinal Chemistry Letters
8.
Arad, M.; Seidman, C. E.; Seidman, J. G. AMP-activated
In a screen of 115 enzymes, transporters and receptors, MK-
8722 had 3-10 ꢀM activity at 4 common off-targets [serotonin
5-hydroxytryptamine (5-HT2A), dopamine transporter (DAT),
norepinephrine transporter (NET), monoamineoxidase-A
(MOA-A) and monoamine oxidase-B (MOA-B)]. None of
these activities are anticipated to result in any significant
pharmacology at the (unbound) exposures relevant for AMPK-
mediated efficacy. Pharmacokinetics in preclinical species
were supportive of QD dosing in the clinic.19
protein kinase in the heart: role during health and disease. Circ. Res.
2007, 100, 474-88.
9.
adenosine 5'-monophosphate activated protein kinase (AMPK) modu-
lators and human diseases. J. Med. Chem. 2015, 58, 2-29.
1
2
3
4
5
6
7
8
Rana, S.; Blowers, E. C.; Natarajan, A. Small molecule
10.
Cameron, K. O.; Kurumbail, R. G. Recent progress in the
identification of adenosine monophosphate activated protein kinase
(AMPK) activators. Bioorg. Med. Chem Lett. 2016, 26, 5139-5148.
11.
Wojtaszewski, J. F. A-769662 activates AMPK beta1-containing
complexes but induces glucose uptake through PI3-kinase-
dependent pathway in mouse skeletal muscle. Am. J. Physiol. Cell
Physiol. 2009, 297, C1041-52.
Treebak, J. T.; Birk, J. B.; Hansen, B. F.; Olsen, G. S.;
In summary, MK-8722 is a selective, small molecule, direct,
pan-AMPK activator. Our efforts to arrive at the molecule also
identified several tool compounds that have been useful in
assessing the in vitro and in vivo effects of liver-selective
and/or β1-selective AMPK activation. Based on our studies,
both β1- and liver-selective activators have robust effects on
lipid metabolism in rodents. While these may prove to be use-
ful for various disease conditions, they were not sufficient to
improve glucose homeostasis in rodents. Data obtained using
MK-8722 suggest that β2 activation is required to modulate
glycemic control, reinforcing the link between glucose uptake
following exercise and activation of β2 AMPK complexes.
9
a
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
12.
Viollet, B.; Guigas, B.; Leclerc, J.; Hebrard, S.; Lantier, L.;
Mounier, R.; Andreelli, F.; Foretz, M. AMP-activated protein kinase
in the regulation of hepatic energy metabolism: from physiology to
therapeutic perspectives. Acta Physiol (Oxf) 2009, 196, 81-98.
13.
Xiao, B.; Sanders, M. J.; Carmena, D.; Bright, N. J.; Haire,
L. F.; Underwood, E.; Patel, B. R.; Heath, R. B.; Walker, P. A.; Hal-
len, S.; Giordanetto, F.; Martin, S. R.; Carling, D.; Gamblin, S. J.
Structural basis of AMPK regulation by small molecule activators.
Nat. Commun. 2013, 4, 3017.
14.
Fullerton, M. D.; Galic, S.; Marcinko, K.; Sikkema, S.;
Pulinilkunnil, T.; Chen, Z. P.; O'Neill, H. M.; Ford, R. J.; Palanivel,
R.; O'Brien, M.; Hardie, D. G.; Macaulay, S. L.; Schertzer, J. D.;
Dyck, J. R.; van Denderen, B. J.; Kemp, B. E.; Steinberg, G. R. Single
phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis
and the insulin-sensitizing effects of metformin. Nat. Med. 2013, 19,
1649-54.
Supporting Information Available: syntheses of compounds 3-6, in
vitro enzyme activation data for compounds 3a and 6. The supporting
information is available free of charge on the ACS Publications web-
site at DOI: XXX
15.
Lan, P.; Romero, F. A.; Wodka, D.; Kassick, A. J.; Zhou,
G.; Chen, Y.; Zhang, X.; Zhang, A.; Ying, L.; Trujillo, M. E.; Shao,
Q.; Wu, M.; Xu, S.; He, H.; Chapman, K. T.; Weber, A.; Sebhat, I.
K.; Makara, G. M. Hit-to-lead optimization and discovery of 5-((5-
([1,1'-biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-
methylbenzoic acid (MK-3903): a novel class of benzimidazole-based
activators of AMP-activated protein kinase. J. Med. Chem. 2017, 60,
9040-9052.
REFERENCES
1.
Diabetes Federation, 2015: Belgium, 2015.
2. Sterrett, J. J.; Bragg, S.; Weart, C. W. Type 2 Diabetes
Medication Review. Am. J. Med. Sci. 2016, 351, 342-55.
3. Sigal, R. J.; Kenny, G. P.; Boule, N. G.; Wells, G. A.; Pru-
Federation, I. D. IDF Diabetes Atlas, 7 ed. International
16.
Insulin Sensitivity. Diabetes Metab. J. 2013, 37, 1-21.
17. Wojtaszewski, J. F.; Birk, J. B.; Frosig, C.; Holten, M.; Pi-
O'Neill, H. M. AMPK and Exercise: Glucose Uptake and
d'homme, D.; Fortier, M.; Reid, R. D.; Tulloch, H.; Coyle, D.; Phil-
lips, P.; Jennings, A.; Jaffey, J. Effects of aerobic training, resistance
training, or both on glycemic control in type 2 diabetes: a randomized
trial. Ann Intern Med 2007, 147, 357-69.
legaard, H.; Dela, F. 5'AMP activated protein kinase expression in
human skeletal muscle: effects of strength training and type 2 diabe-
tes. J Physiol 2005, 564, 563-73.
4.
etal muscle glucose uptake. Physiol. Rev. 2013, 93, 993-1017.
5. Hardie, D. G. AMP-activated protein kinase: maintaining
Richter, E. A.; Hargreaves, M. Exercise, GLUT4, and skel-
18.
Chen, Z.; Heierhorst, J.; Mann, R. J.; Mitchelhill, K. I.;
Michell, B. J.; Witters, L. A.; Lynch, G. S.; Kemp, B. E.; Stapleton,
D. Expression of the AMP-activated protein kinase beta1 and beta2
subunits in skeletal muscle. FEBS Lett. 1999, 460, 343–348.
energy homeostasis at the cellular and whole-body levels. Annu. Rev.
Nutr. 2014, 34, 31-55.
6.
Steinberg, G. R.; Kemp, B. E. AMPK in health and disease.
19.
Myers, R.W.; Guan, H.-P.; et al. Systemic Pan-AMPK Ac-
Physiol. Rev. 2009, 89, 1025-1078.
tivator MK-8722 Improves Glucose Homeostasis But Induces Cardiac
Hypertrophy. Science 2017, 357, 507-511.
7.
Grahame Hardie, D. AMP-activated protein kinase: a key
regulator of energy balance with many roles in human disease. J.
Intern. Med. 2014, 276, 543-59.
ACS Paragon Plus Environment