Organic Letters
Letter
(13) (a) Aukland, M. H.; Siauciulis, M.; West, A.; Perry, G. J. P.;
Procter, D. J. Nat. Catal. 2020, 3, 163−169. (b) Siauciulis, M.;
Ahlsten, N.; Pulis, A. P.; Procter, D. J. Angew. Chem., Int. Ed. 2019, 58,
8779−8783. (c) Aukland, M. H.; Talbot, F. J. T.; Fernandez-Salas, J.
A.; Ball, M.; Pulis, A. P.; Procter, D. J. Angew. Chem., Int. Ed. 2018, 57,
9785−9789.
(14) (a) Li, J.; Chen, J.; Sang, R.; Ham, W. S.; Plutschack, M. B.;
Berger, F.; Chabbra, S.; Schnegg, A.; Genicot, C.; Ritter, T. Nat.
Chem. 2020, 12, 56−62. (b) Berger, F.; Plutschack, M. B.; Riegger, J.;
Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature 2019, 567,
223−228. (c) Sang, R.; Korkis, S. E.; Su, W.; Ye, F.; Engl, P. S.;
Berger, F.; Ritter, T. Angew. Chem., Int. Ed. 2019, 58, 16161−16166.
(d) Chen, J.; Li, J.; Plutschack, M. B.; Berger, F.; Ritter, T. Angew.
Chem., Int. Ed. 2020, 59, 5616−5620. (e) Xu, P.; Zhao, D.; Berger, F.;
Hamad, A.; Rickmeier, J.; Petzold, R.; Kondratiuk, M.; Bohdan, K.;
Ritter, T. Angew. Chem., Int. Ed. 2020, 59, 1956−1960.
REFERENCES
■
(1) For examples, see: (a) Fujii, S.; Miyajima, Y.; Masuno, H.;
Kagechika, H. J. Med. Chem. 2013, 56, 160−166. (b) Yamakawa, T.;
Kagechika, H.; Kawachi, E.; Hashimoto, Y.; Shudo, K. J. Med. Chem.
1990, 33, 1430−1437.
(2) For examples, see: (a) Zaitsev, K. V.; Lam, K.; Poleshchuk, O.
K.; Kuz’mina, L. G.; Churakov, A. V. Dalton Trans 2018, 47, 5431−
5444. (b) Su, T. A.; Li, H.; Klausen, R. S.; Kim, N. T.; Neupane, M.;
Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C.
Acc. Chem. Res. 2017, 50, 1088−1095. (c) Kachian, J. S.; Wong, K. T.;
Bent, S. F. Acc. Chem. Res. 2010, 43, 346−355. (d) Buriak, J. M. Chem.
Rev. 2002, 102, 1271−1308.
(3) (a) Fricke, C.; Schoenebeck, F. Acc. Chem. Res. 2020, 53, 2715−
2725. (b) Fricke, C.; Deckers, K.; Schoenebeck, F. Angew. Chem., Int.
Ed. 2020, 59, 18717−18722. (c) Sherborne, G. J.; Gevondian, A. G.;
Funes-Ardoiz, I.; Dahiya, A.; Fricke, C.; Schoenebeck, F. Angew.
Chem., Int. Ed. 2020, 59, 15543−15548. (d) Dahiya, A.; Fricke, C.;
Schoenebeck, F. J. Am. Chem. Soc. 2020, 142, 7754−7759. (e) Fricke,
C.; Dahiya, A.; Reid, W. B.; Schoenebeck, F. ACS Catal. 2019, 9,
9231−9236. (f) Fricke, C.; Sherborne, G. J.; Funes-Ardoiz, I.; Senol,
E.; Guven, S.; Schoenebeck, F. Angew. Chem., Int. Ed. 2019, 58,
17788−17795.
(15) For selected examples, see: (a) Nie, X. X.; Huang, Y. H.; Wang,
P. Org. Lett. 2020, 22, 7716−7720. (b) Tian, Z. Y.; Wang, S. M.; Jia,
S. J.; Song, H. X.; Zhang, C. P. Org. Lett. 2017, 19, 5454−5457.
(c) Vasu, D.; Yorimitsu, H.; Osuka, A. Angew. Chem., Int. Ed. 2015,
54, 7162−7166. (d) Lin, H.; Dong, X.; Li, Y.; Shen, Q.; Lu, L. Eur. J.
Org. Chem. 2012, 2012, 4675−4679. (e) Srogl, J.; Allred, G. D.;
Liebeskind, L. S. J. Am. Chem. Soc. 1997, 119, 12376−12377.
(16) Wu, Y.; Huang, Y. H.; Chen, X. Y.; Wang, P. Org. Lett. 2020,
22, 6657−6661.
(4) For other uses in cross-coupling, see: (a) Xu, M. Y.; Jiang, W. T.;
Li, Y.; Xu, Q. H.; Zhou, Q. L.; Yang, S.; Xiao, B. J. Am. Chem. Soc.
2019, 141, 7582−7588. (b) Song, H. J.; Jiang, W. T.; Zhou, Q. L.; Xu,
M. Y.; Xiao, B. ACS Catal. 2018, 8, 9287−9291. (c) Zhang, Z. T.;
Pitteloud, J. P.; Cabrera, L.; Liang, Y.; Toribio, M.; Wnuk, S. F. Org.
Lett. 2010, 12, 816−819. (d) Pitteloud, J. P.; Zhang, Z. T.; Liang, Y.;
Cabrera, L.; Wnuk, S. F. J. Org. Chem. 2010, 75, 8199−8212.
(5) (a) Jiang, W. T.; Xu, M. Y.; Yang, S.; Xie, X. Y.; Xiao, B. Angew.
Chem., Int. Ed. 2020, 59, 20450−20454. (b) Xu, M. Y.; Jiang, W. T.;
Li, Y.; Xu, Q. H.; Zhou, Q. L.; Yang, S.; Xiao, B. J. Am. Chem. Soc.
2019, 141, 7582−7588.
(17) Minami, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. ACS Catal.
2018, 8, 579−583.
(18) Metal- and light-free transformations of sulfonium salts, via
direct ipso-substitution of the SR2 moiety, were shown for
fluorination. See: (a) ref 14e. (b) Gendron, T.; Sander, K.;
Cybulska, K.; Benhamou, L.; Sin, P. K. B.; Khan, A.; Wood, M.;
Porter, M. J.; Arstad, E. J. Am. Chem. Soc. 2018, 140, 11125−11132.
(c) Mu, L.; Fischer, C. R.; Holland, J. P.; Becaud, J.; Schubiger, P. A.;
Schibli, R.; Ametamey, S. M.; Graham, K.; Stellfeld, T.; Dinkelborg, L.
M.; Lehmann, L. Eur. J. Org. Chem. 2012, 2012, 889−892. Two
methods enabled C−O and C−N bond formations from triarylsulfo-
nium salts at high temperature, requiring a large excess of [Ar3S]
[OTf]. For more details, see: (d) Ming, X. X.; Tian, Z. Y.; Zhang, C.
P. Chem. - Asian J. 2019, 14, 3370−3379. (e) Tian, Z. Y.; Ming, X. X.;
Teng, H. B.; Hu, Y. T.; Zhang, C. P. Chem. - Eur. J. 2018, 24, 13744−
13748.
̂
(6) Langle, S.; David-Quillot, F.; Balland, A.; Abarbri, M.; Duchene,
A. J. Organomet. Chem. 2003, 671, 113−119.
(7) (a) Komami, N.; Matsuoka, K.; Yoshino, T.; Matsunaga, S.
Synthesis 2018, 50, 2067−2075. (b) Lesbani, A.; Kondo, H.; Yabusaki,
Y.; Nakai, M.; Yamanoi, Y.; Nishihara, H. Chem. - Eur. J. 2010, 16,
13519−13527. (c) Nakamura, T.; Kinoshita, H.; Shinokubo, H.;
Oshima, K. Org. Lett. 2002, 4, 3165−3167. (d) Azarian, D.; Dua, S. S.;
Eaborn, C.; Walton, D. R. M. J. Organomet. Chem. 1976, 117, C55−
C57.
(19) Huang, C.; Feng, J.; Ma, R.; Fang, S.; Lu, T.; Tang, W.; Du, D.;
Gao, J. Org. Lett. 2019, 21, 9688−9692.
(8) (a) Elsby, M. R.; Liu, J.; Zhu, S.; Hu, L.; Huang, G.; Johnson, S.
A. Organometallics 2019, 38, 436−450. (b) Chen, C.; Guan, M.;
Zhang, J.; Wen, Z.; Zhao, Y. Org. Lett. 2015, 17, 3646−3649.
(c) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16,
1968−1971. For an example of meta-selective C−H germylation, see:
(d) Modak, A.; Patra, T.; Chowdhury, R.; Raul, S.; Maiti, D.
Organometallics 2017, 36, 2418−2423.
(20) (a) Zhao, J. N.; Kayumov, M.; Wang, D. Y.; Zhang, A. Org. Lett.
2019, 21, 7303−7306. (b) Our attempts to germylate PhSMe2+ using
Et3Ge-GeEt3 with CsF resulted in demethylation to PhSMe. With
PhMe2Si-GeEt3 and CsF, only traces of ArGeR3 were formed.
(21) For a report on synthesis of this reagent, see: Kumada, M.;
Kondo, T.; Mimura, K.; Ishikawa, M.; Yamamoto, K.; Ikeda, S.;
Kondo, M. J. Organomet. Chem. 1972, 43, 293−305.
(9) For selected applications on Pd(I) dimer catalysis, see:
(a) Mendel, M.; Kalvet, I.; Hupperich, D.; Magnin, G.;
Schoenebeck, F. Angew. Chem., Int. Ed. 2020, 59, 2115−2119.
(b) Kalvet, I.; Deckers, K.; Funes-Ardoiz, I.; Magnin, G.; Sperger, T.;
Kremer, M.; Schoenebeck, F. Angew. Chem., Int. Ed. 2020, 59, 7721−
7725. (c) Magnin, G.; Clifton, J.; Schoenebeck, F. Angew. Chem., Int.
Ed. 2019, 58, 10179−10183. (d) Chen, X. Y.; Pu, M.; Cheng, H. G.;
Sperger, T.; Schoenebeck, F. Angew. Chem., Int. Ed. 2019, 58, 11395−
11399. (e) Scattolin, T.; Senol, E.; Yin, G.; Guo, Q.; Schoenebeck, F.
Angew. Chem., Int. Ed. 2018, 57, 12425−12429. (f) Keaveney, S. T.;
Kundu, G.; Schoenebeck, F. Angew. Chem., Int. Ed. 2018, 57, 12573−
12577. (g) Kalvet, I.; Magnin, G.; Schoenebeck, F. Angew. Chem., Int.
Ed. 2017, 56, 1581−1585.
(22) (a) Ono, K.; Ishizuka, H.; Nakano, T. J. Organomet. Chem.
1999, 587, 144−148. (b) Yamamoto, K.; Hayashi, A.; Suzuki, S.;
Tsuji, J. Organometallics 1987, 6, 974−979.
(23) For alternative metalated Ge-nucleophiles (lithium, magne-
sium, or zinc), see: Xue, W.; Mao, W.; Zhang, L.; Oestreich, M.
Angew. Chem., Int. Ed. 2019, 58, 6440−6443.
(24) (a) Mochida, K.; Suzuki, H.; Nanba, M.; Kugita, T.; Yokoyama,
Y. J. Organomet. Chem. 1995, 499, 83−88. (b) Kabaki, M.; Inoue, S.;
Nagata, Y.; Sato, Y. Synth. Commun. 1990, 20, 3245−3252.
(25) Frisch, M. J. et al. Gaussian09, revision E.01. (see Supporting
Information for full reference) (b) Calculations were performed at
the CPCM (MeCN) M06-2X/6-311++G(d,p) level of theory.
(26) The “wrong” C−S bond cleavage has been reported in such
ipso-substitutions. Also, for different transformations, see: (a) ref 14e.
(b) Ref 18d. (c) Ye, Y.; Zhu, J.; Huang, Y. Org. Lett. 2021, 23, 2386−
2391.
(10) Selmani, A.; Gevondian, A. G.; Schoenebeck, F. Org. Lett. 2020,
22, 4802−4805.
(11) For a mechanistic study on silylation, see: Xu, Z.; Xu, J. Z.;
Zhang, J.; Zheng, Z. J.; Cao, J.; Cui, Y. M.; Xu, L. W. Chem. - Asian J.
2017, 12, 1749−1757.
(27) The [Ar-DBT+][Et3Ge−] adduct is formed from 4-fluorophenyl
dibenzothiophenium cation Ar-DBT+ via a nucleophilic attack of
Et3Ge− to the sulfur atom. See the SI for a full reaction profile.
(12) Cowper, P.; Jin, Y.; Turton, M. D.; Kociok-Kohn, G.; Lewis, S.
E. Angew. Chem., Int. Ed. 2016, 55, 2564−2568.
4783
Org. Lett. 2021, 23, 4779−4784