5036
P. Borah et al. / Tetrahedron Letters 53 (2012) 5034–5037
R1
NaN3
N
N
N
References and notes
NC
Cl
R1
Cl
O
N
CHO
O
Et3N
1. (a) Murray, R. D. H.; Mendez, J.; Brown, R. A. The Natural Coumarins; John Wiley
Sons: New York, 1982; (b) Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas,
K. E.; Nicolaides, D. N. Curr. Pharm. Des. 2004, 10, 3813.
2. Guillo, L. A.; Beylot, B.; Vigny, P.; Spassky, A. Photochem. Photobiol. 1996, 64,
349.
3. Bangar. Raju, B.; Eliasson, B. J. Photochem. Photobiol. 1998, 116, 135.
4. Guinn, D. E.; Summers, J. B.; Heyman, H. R.; Conway, R. G.; Rhein, D. A.; Albert,
D. H.; Magoc, T.; Carter, G. W. J. Med. Chem. 1992, 35, 2055.
R1CH2CN
3
+
O
[A]
O
4
2
O
O
N
N
N
R1
[B]
N
5. Pars, H. G.; Granchelli, F. E.; Razdan, R. K.; Keller, J. K.; Teiger, D. G.; Rosenberg,
F. J.; Hris, L. S. J. Med. Chem. 1976, 19, 445.
O
O
5
6. (a) Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry, S.; Wermuth, C. G.;
Schwartz, J.-C.; Sokoloff, P.; Stark, H. Chem. Bio. Chem. 2004, 5, 508; (b) Unangst,
P. C.; Capiris, T.; Connor, D. T.; Heffner, T. G.; MacKenzie, R. G.; Miller, S. R.;
Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1997, 40, 2688; (c) Zhang, M.-R.;
Haradahira, T.; Maeda, J.; Okauchi, T.; Kawabe, K.; Kida, T.; Obayashi, S.; Suzuki,
K.; Suhara, T. Nucl. Med. Biol. 2002, 29, 469.
Scheme 2.
and alkyl/aryl acetonitriles 4/6/8, and by exploring intramolecular
1,3-dipolar cycloaddition reaction of azide to nitriles (Scheme 1).
4-Hydroxy coumarin 1 was taken as starting material in our
reaction strategy which on treatment with Vilsmeier reagent
(DMF + POCl3) afforded the key intermediate 4-chloro-3-formyl
coumarin 2 (Scheme 1).23 In a simple experimental procedure,24
treatment of 4-chloro-3-formyl coumarin 2, sodium azide 3, and
cyanoacetamide 4a for 3 h at 50–60 °C in the presence of catalytic
amounts of triethylamine using dimethylformamide as solvent
afforded after work-up tetrazolo[40,50:1,6]pyrido[2,3-c]coumarin
derivative 5a in excellent yields. The structure of the compound
was ascertained from the spectroscopic data and elemental analy-
sis. Although there was a possibility of the formation of triazolo
fused pyrimido[4,5-c]coumarin derivative, we obtained exclusively
the tetrazole fused coumarin derivative 5a. The generality of the
reaction was established by synthesizing a series of compounds
5a–c, 7a–d, and 9a–c by utilizing 2 and 3 with 4/6/8 and character-
izing them (Table 1). The compounds 6 and 8 were prepared fol-
lowing the standard reaction protocol.25
The formation of the products from the three-component
reactions was confirmed by performing the reactions stepwise
(Scheme 2). First, intermediate [A] was prepared from the conden-
sation of compound 2 with 4 in the presence of catalytic amounts
of triethylamine at room temperature using ethanol as solvent.26
Then the intermediate [A] was reacted with sodium azide 3 at
50–60 °C using DMF as solvent which afforded compound 5.27
The intermediate [B] could not be isolated in all the cases. Simi-
larly, compounds 7 and 9 were synthesized by performing the
reactions stepwise.
It was observed that malononitrile 4c and ethyl-cyanoacetate
4b are more reactive than cyano-acetamide 4a. However, product
5a could be isolated much more easily than the others. Although,
compounds 6 and 8 bearing a variety of either electron donating
or electron withdrawing functional groups at the benzene ring
were efficient for the three-component reaction, those bearing
electron-withdrawing groups were found more reactive and thus
products were obtained in high yields and in shorter reaction time
than the others.
In summary, we have reported the synthesis of some novel tet-
razole fused pyrido[2,3-c]coumarin derivatives from a one-pot
three component reaction via intramolecular 1,3-dipolar cyclo-
addition reaction of azide to nitriles. The work-up procedure of
the reaction is simple; products were isolated simply by filtration
and purified by chromatography. This reaction which can be fur-
ther utilized for the synthesis of many other heterocyclic com-
pounds of biological importance is a valuable addition to the
chemistry of coumarins in particular and heterocyclic compounds
as a whole. Further study of the reaction is in progress.
7. Coumarins: Biology, Applications and Mode of Action; O’Kennedy, R., Thornes, R.
D., Eds.; Wiley: Chichester, 1997.
8. Raev, L. D.; Voinova, E.; Ivanov, I. C.; Popov, D. Pharmazie 1990, 45, 696.
9. Connor, D. T.; Unangst, P. C.; Schwender, C. F.; Sorenson, R. J.; Carethers, M. E.;
Puchalski, C.; Brown, R. E.; Finkel, M. P. J. Med. Chem. 1989, 32, 683.
10. Khan, I. A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg.
Med. Chem. Lett. 2005, 15, 3584.
11. (a) Ukawa, K.; Ishiguro, T.; Wada, Y.; Nohara, A. Heterocycles 1931, 1986, 24; (b)
Heber, D. Arch. Pharm. 1987, 320, 402; (c) Heber, D.; Berghaus, T. J. Heterocyclic
Chem. 1994, 31, 1353.
12. (a) Savel’ev, V. L.; Pryanishnikova, N. T.; Zagorevskii, V. A.; Chernyakova, I. V.;
Artamonova, O. S.; Shavyrina, V. V.; Malysheva, L. I. Khim. Farm. Zh. 1983, 17,
697; (b) Trkovnik, M.; Kalaj, V.; Kitan, D. Org. Prep. Proced. Int. 1987, 19, 450; (c)
Eggenweiler, M.; Rochus, J.; Wolf, M.; Gassen, M.; Poeschke, O.; Merck Patent
Gmbh, Germany, PCT Int. Appl. 2001.
13. (a) Beccalli, E. M.; Contini, A.; Trimarco, P. Eur. J. Org. Chem. 2003, 3976; (b)
Beccalli, E. M.; Contini, A.; Trimarco, P. Tetrahedron Lett. 2004, 45, 3447; (c)
Gautam, D. R.; Protopappas, J.; Fylaktakidou, C. K.; Litinus, K. E.; Nicolaides, D.
N.; Tsoleridis, C. A. Tetrahedron Lett. 2009, 50, 448.
14. Zubarev, V. Y.; Ostrovskii, V. A. Chem. Het. Comp. 2000, 36, 759.
15. Bulter, R. N. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C.
W., Eds.; Pergamon: Oxford, 1984; Vol. 5, p 791.
16. Herr, J. R. Bioorg. Med. Chem. 2002, 10, 3379. and the references cited therein.
17. (a) Wexler, R. R.; Greenlee, W. J.; Irvin, J. D.; Goldberg, M. R.; Prendergast, K.;
Smith, R. D.; Timmermans, P. B. M. W. M J. Med. Chem. 1996, 39, 625; (b)
Schmidt, B.; Scieffer, B. J. Med. Chem. 2003, 46, 2261; (c) Schmidt, B.; Drexler,
H.; Scieffer, B. Am. J. Cardiovasc. Drugs 2004, 4, 361.
18. (a) Tennant, G. J. Chem. Soc. C 1966, 2290; (b) Sutherland, D. R.; Tennant, G. J.
Chem. Soc., Per. Trans 1974, I, 534; (c) Westerlurd, C. J. Heterocycl. Chem. 1980,
17, 1765; (d) Lauria, A.; Patella, C.; Diana, P.; Barraja, P.; Montalbano, A.;
Cirrincione, G.; Dattallo, G.; Almerico, A. M. Tetrahedron Lett. 2006, 47, 2187.
19. Smalley, R. K.; Teguiche, M. Synthesis 1990, 654.
20. (a) Baruah, B.; Bhuyan, P. J. Tetrahedron 2009, 65, 7099; (b) Deb, M. L.;
Majumder, S.; Baruah, B.; Bhuyan, P. J. Synthesis 2010, 929; (c) Majumder, S.;
Bhuyan, P. J. Tetrahedron Lett. 2012, 53, 137; (d) Naidu, P. S.; Bhuyan, P. J.
Tetrahedron Lett. 2012, 53, 426; (e) Majumder, S.; Bhuyan, P. J. Tetrahedron Lett.
2012, 53, 762.
21. Majumder, S.; Bora, P.; Bhuyan, P. J. Mol. Diver. 2012, 16, 279.
22. (a) Basolo, L.; Beccalli, E. M.; Borsini, E.; Broggini, G.; Pellegrino, S. Tetrahedron
2008, 64, 8182; (b) Basolo, L.; Beccalli, E. M.; Borsini, E.; Broggini, G.; Khansaa,
M.; Rigamonti, M. Eur. J. Org. Chem. 2010, 1694; (c) Butkovic, K.; Marinic, Z.;
Molcanov, K.; Kojic-Prodic, B.; Sindler-Kulyk, M. Beil. J. Org. Chem. 2011, 1663;
(d) Yonekwa, M.; Koyama, Y.; Kuwata, S.; Takata, T. Org. Lett. 2012, 14, 1164.
23. Andrieux, J.; Battioni, J.-P.; Giraud, M.; Molho, D. Bull. Soc. Chem. Fr. 1973, 6,
2093.
24. Representative
procedure
for
the
synthesis
of
tetrazolo[40,50:1,6]pyrido[2,3-c]coumarins 5/7/9:
4-Chloro-3-formyl coumarin 2 (1 mmol, 208 mg), sodium azide 3 (1.25 mmol,
80 mg) and cyanoacetamide 4a (1.5 mmol, 126 mg) were taken in a round
bottom flask. To this were added DMF (5 ml) and one drop of triethylamine. The
reaction mixture was stirred with a magnetic stirrer at 50–60 °C for 3 h. After
completion of the reaction (monitored by TLC), the mixture was cooled to room
temperature and then poured into water (10 mL) with stirring.
A brown
coloured solid product appears. The mixture was kept in a refrigerator for 3 h.
The solid product was filtered and purified by column chromatography using
petroleum ether and ethyl acetate (7:3) as eluent. The structure of the
compound was ascertained as 5a from the spectroscopic data and elemental
analysis. Yield = 0.203 g (72.24%). Compound 5a: Light brown solid: Mp 228–
229 °C.ꢀIR (KBr)
m .
max = 3419, 2945, 1719, 1702 cmꢁ1 1H NMR (300 MHz, DMSO-
d6): d 6.21 (s, 1H), 7.10 (m, 2H), 7.21 (d, 1H), 7.49 (d, 1H), 7.70 (brs, 2H). 13C NMR
(75 MHz, DMSO-d6) d 114.88, 117.22, 118.85, 124.71, 125.19, 125.57, 125.95,
135.82, 147.78, 148.70, 153.20, 158.33, 161.85. MS (m/z) 281.2 [M+]. Anal. calcd
for C13H7N5O3: C, 55.52; H, 2.49; N, 24.91%. Found: C, 55.43; H, 2.58; N, 24.83%.
Similarly compounds 5b–c/7a–d/9a–c were synthesized and characterized.
25. (a) Slatt, J.; Romero, I.; Bergman, J. Synthesis 2004, 2760; (b) Nowwill, R. N.;
Patel, T. J.; Beasley, D. L.; Alvarez, J. A.; Jackso, E., III; Hizer, T.; Ghiviriga, I.;
Mateer, S. C.; Feske, B. D. Tetrahedron Lett. 2011, 52, 2440.
Acknowledgement
The authors thank the DST, New Delhi, for financial support and
P.S.N. thanks UGC, New Delhi for Junior Research Fellowship.