5568
A. G. Dossetter et al. / Bioorg. Med. Chem. Lett. 22 (2012) 5563–5568
Table 4
Serum protein binding and pharmacokinetic data
Compd
Species
Protein bindinga (% free)
In vitro hepatocyte clintb
(l
L/min/106 cells)
Clp (mL/min/kg)
Vdss (L/kg)
iv half life (h)
Bioavailability (%)
4
Ratc
17
16
17
43
42
64
35
53
49
64 1.3
5.6 0.2
<2.0 (n = 4)
7.1 6.5
<2.0 (n = 2)
5.2 (n = 1)
<3.0 (n = 2)
<3.0 (n = 4)
<2.0 (n = 5)
47 5.1
13 4.9
1.5 0.3
1.5 0.5
0.8 0.2
1.4 0.2
20 9.0
78 21
Dogd
Human
20
24
27
Ratc
23e
0.54
1.4
3.3e
Human
Ratc
19e
0.8
0.63
17e
Human
Ratc
32 8.1
1.3 0.3
2.0 0.3
33 11
Human
a
b
c
All results are a mean at least n = 2 experiments.
(ꢁ)—number of repeat experiments were result was below limit of detection.
Alderley Park Han Wistar male rats—dosed to fed animals, po 2.0 mg/kg as a suspension in 5% DMSO/95% HPMC/Tween, iv dosed as solution in 40% DMA/Water at 2.0 mg/
kg.
d
Beagle dog—dosed to fasted animals, po 1.0 mg/kg as a suspension in 5% DMSO/95% HPMC/Tween, iv dosed as solution in 10% DMSO/90% Sorensons at 1.0 mg/kg. All
pharmacokinetic experiments reported were single dosed compounds in at least two experiments involving two animals in each, unless otherwise stated.
e
From a single experiment with two animals.
5. Stoch, S.; Wagner, J. Clin. Pharmacol. Ther. (NY, U. S.) 2008, 83, 172.
6. Felson, D. T. N. Engl. J. Med. 2006, 354, 841.
7. Vasiljeva, O.; Reinheckel, T.; Peters, C.; Turk, D.; Turk, V.; Turk, B. Curr. Pharm.
plasma, and are highly unbound. Scaling in vitro rat hepatic clear-
ance to whole liver predicted the measured in vivo clearance of 4
but under predicts for the rest of the compounds. We suspect that
clearance was higher for these compounds due to renal elimina-
tion. Disappointingly, sulphone 20 has low bio-availability, which
given the low clearance and polarity of the compound must be
due to poor passive absorption (not indicated by CACO2 or MDCK
assays). All four compounds had low human hepatic in vitro clear-
ance suggesting HLM was predicting well for the series. The 5-aza-
benzothaizole 24 was orally bio-available and similar to 4 with
lower clearance and overall represented the best isostere found
from these studies. Finally 4 and 27 were tested in a low
through-put in vitro primary human cell osteoclast ‘pit’ resorption
assay and were found to have similar potency of pIC50 7.2 and 6.9,
respectively. This technically demanding assay measured the abil-
ity of compounds to stop the osteoclast cells dissolving cartilage
and bone, thereby stopping the observed formation of ‘pits’ in
the bone sample (see Supplementary data). Results were only con-
sidered qualitatively as no relationship was found to PD end points
in the dog CTX-I model (data not shown).
Des. 2007, 13, 387.
8. Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.;
Falgueyret, J.; Kimmel, D. B.; Lamontagne, S.; Leger, S.; LeRiche, T.; Li, C. S.;
Masse, F.; McKay, D. J.; Nicoll-Griffith, D. A.; Oballa, R. M.; Palmer, J. T.; Percival,
M. D.; Riendeau, D.; Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Therien,
M.; Truong, V.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni, R.; Black,
W. C. Bioorg. Med. Chem. Lett. 2008, 18, 923.
9. Eisman, J. A.; Bone, H. G.; Hosking, D. J.; McClung, M. R.; Reid, I. R.; Rizzoli, R.;
Resch, H.; Verbruggen, N.; Hustad, C. M.; Da, S.; Carolyn; Petrovic, R.; Santora,
A. C.; Ince, B. A.; Lombardi, A. J. Bone Miner. Res. 2011, 26, 242.
10. Stoch, S. A.; Zajic, S.; Stone, J.; Miller, D. L.; Van, D. K.; Gutierrez, M. J.; De, D. M.;
Liu, L.; Liu, Q.; Scott, B. B.; Panebianco, D.; Jin, B.; Duong, L. T.; Gottesdiener, K.;
Wagner, J. A. Clin. Pharmacol. Ther. (N. Y., NY, U. S.) 2009, 86, 175.
11. Dossetter, A. G.; Howard Beeley, H.; Bowyer, J.; Cook, C. R.; Crawford, J. J.;
Finlayson, J. E.; Heron, N. M.; Christine Heyes, C.; Highton, A. J.; Hudson, J. A.;
Jestelb, A.; Kenny, P. W.; Krappb, S.; Martin, S.; MacFaul, P. A.; McGuire, T. M.;
Morentin-Gutierrez, P.; Morley, A. D.; Morris, J. J.; Page, K. M.; Rosenbrier-
Ribeiro, L.; Sawney, H.; Steinbacherb, S.; Smith, C.; Vickers, M. J. Med. Chem.
12. Dossetter, A. G.; Heron, N. M. PCT Int. Appl. 2008, 98.
13. Dossetter, A. G.; Heron, N. M. PCT Int. Appl. 2008, 66.
14. Garnero, P.; Ferreras, M.; Karsdal, M.; Nicamhlaoibh, R.; Risteli, J.; Borel, O.;
Qvist, P.; Delmas, P. D.; Foged, N. T.; Delaisse, J. M. J. Bone Miner. Res. 2003, 18,
859.
In conclusion our studies of benzothiazole 4 found this potent
inhibitor of Cat K had good dog PK and as such was used to study
in vivo target engagement and pharmacodynamic effects success-
fully. We strove to improve on this start point by increasing the
margin to hERG binding by the combined tactics of reducing lipo-
philicity and structure based design. Whilst clear improvements
were made, we failed to maintain or increase Cat K inhibition, or
indeed selectivity for other cathepsins, which remained fairly flat
across the compounds in this study. However substituted benzo-
thiazole 20, and isosteres 21, 24 and 27 were all within 4 fold of
Cat K inhibition, below the assay limit for hERG binding and main-
tained similar rodent PK properties when compared to 4.
15. Herrmann, M.; Seibel, M. Clin. Chim. Acta 2008, 393, 57.
16. Okuno, S.; Inaba, M.; Kitatani, K.; Ishimura, E.; Yamakawa, T.; Nishizawa, Y.
Osteoporosis Int. 2005, 16, 501.
17. Black, W. C.; Percival, M. D. ChemBioChem 2006, 7, 1525.
18. Falgueyret, J.; Desmarais, S.; Oballa, R.; Black, W. C.; Cromlish, W.; Khougaz, K.;
Lamontagne, S.; Masse, F.; Riendeau, D.; Toulmond, S.; Percival, M. D. J. Med.
Chem. 2005, 48, 7535.
19. De, P.; Fabrizio; Poluzzi, E.; Cavalli, A.; Recanatini, M.; Montanaro, N. Drug Saf.
2002, 25, 263.
20. De, B. M. L.; Pettersson, M.; Meyboom, R. H. B.; Hoes, A. W.; Leufkens, H. G. M.
Eur. Heart J. 2005, 26, 590.
21. Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029.
22. Crawford, J. J.; Dossetter, A. G.; Finlayson, J. E.; Heron, N. M. PCT Int. Appl. 2008,
295.
23. Waring, M. J.; Johnstone, C. Bioorg. Med. Chem. Lett. 2007, 17, 1759.
24. Aronov, A. M. Drug Discovery Today 2005, 10, 149.
25. Cavalli, A.; Poluzzi, E.; De, P.; Fabrizio; Recanatini, M. J. Med. Chem. 2002, 45,
3844.
Supplementary data
26. Cianchetta, G.; Li, Y.; Kang, J.; Rampe, D.; Fravolini, A.; Cruciani, G.; Vaz, R. J.
Bioorg. Med. Chem. Lett. 2005, 15, 3637.
27. Crane, S. N.; Black, W. C.; Palmer, J. T.; Davis, D. E.; Setti, E.; Robichaud, J.;
Paquet, J.; Oballa, R. M.; Bayly, C. I.; McKay, D. J.; Somoza, J. R.; Chauret, N.;
Seto, C.; Scheigetz, J.; Wesolowski, G.; Masse, F.; Desmarais, S.; Ouellet, M. J.
Med. Chem. 2006, 49, 1066.
Supplementary data associated with this article can be found, in
28. Robichaud, J.; Bayly, C. I.; Black, W. C.; Desmarais, S.; Leger, S.; Masse, F.;
McKay, D. J.; Oballa, R. M.; Paquet, J.; Percival, M. D.; Truchon, J.; Wesolowski,
G.; Crane, S. N. Bioorg. Med. Chem. Lett. 2007, 17, 3146.
29. Leach, A. G.; Jones, H. D.; Cosgrove, D. A.; Kenny, P. W.; Ruston, L.; MacFaul, P.;
Wood, J. M.; Colclough, N.; Law, B. J. Med. Chem. 2006, 49, 6672.
30. Dossetter, A. G. Bioorg. Med. Chem. 2010, 18, 4405.
References and notes
1. Teitelbaum, S. L. Science 2000, 289, 1504.
2. Lawrence, R. C.; Felson, D. T.; Helmick, C. G.; Arnold, L. M.; Choi, H.; Deyo, R. A.;
Gabriel, S.; Hirsch, R.; Hochberg, M. C.; Hunder, G. G.; Jordan, J. M.; Katz, J. N.;
Kremers, H. M.; Wolfe, F.; National Arthritis Data Workgroup Arthritis Rheum.
2008, 58, 26.
3. Gupta, S.; Singh, R. K.; Dastidar, S.; Ray, A. Expert Opin. Ther. Targets 2008, 12, 291.
4. Yasuda, Y.; Kaleta, J.; Broemme, D. Adv. Drug Delivery Rev. 2005, 57, 973.
31. Lewis, M. L.; Cucurull-Sanchez, L. J. Comput. Aided Mol. Des. 2009, 23, 97.
32. Hajduk, P. J.; Sauer, D. R. J. Med. Chem. 2008, 51, 553.
´
33. Walczynski, K.; Zuiderveld, O. P.; Timmerman, H. Eur. J. Med. Chem. 2005, 40,
15.