LETTER
Oxidative Olefination of N-(Naphthalen-1-yl)amides
1651
(4) Weissman, H.; Song, X.; Milstein, D. J. Am. Chem. Soc.
2000, 123, 337.
Under the standard conditions, 1a efficiently underwent
coupling with allylbenzene to give 6a in 85% yield, with
no simple olefination product being isolable (Scheme 5).
As expected, bromine substrate 6b was also obtained in
moderate yield (43%), with no Heck product being ob-
served. In line with previous reports,10d,11,14 we reason that
this reaction might undergo direct olefination, followed
by allylic C–H activation (leading to a rhodium(III) η3-al-
lyl species) and nucleophilic C–N bond formation. Alter-
natively, a rhodium(III)-mediated Wacker-type amidation
followed by β-hydrogen elimination might also be opera-
ble.11
(5) (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev.
2009, 110, 624. (b) Satoh, T.; Miura, M. Chem.–Eur. J.
2010, 16, 11212. (c) Song, G.; Wang, F.; Li, X. Chem. Soc.
Rev. 2012, 41, 3651. (d) Zhu, C.; Wang, R.; Falck, J. R.
Chem.–Asian J. 2012, in press; DOI: 10.1002/asia.201200035.
(6) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M.
Chem. Lett. 2010, 39, 744.
(7) (a) Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F. Chem.–
Eur. J. 2011, 17, 7167. (b) Patureau, F. W.; Besset, T.;
Glorius, F. Angew. Chem. Int. Ed. 2011, 50, 1064.
(c) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132,
9982. (d) Wencel-Delord, J.; Nimphius, C.; Patureau, F. W.;
Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 2247.
(e) Wencel-Delord, J.; Nimphius, C.; Patureau, F. W.;
Glorius, F. Chem.–Asian J. 2012, in press; DOI:
10.1002/asia.201101018. (f) Rakshit, S.; Grohmann, C.;
Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
(8) (a) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K.
Angew. Chem. 2011, 123, 1374. (b) Rakshit, S.; Patureau,
F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.
(c) Stuart, D. R.; Bertrand-Laperle, M. G.; Burgess, K. M.
N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
(9) (a) Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011,
47, 12074. (b) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc.
2010, 132, 10565. (c) Hyster, T. K.; Rovis, T. Chem. Sci.
2011, 2, 1606.
Ph
H
NHAc
NAc
[RhCp*Cl2]2 (4 mol%)
Ph
(2 equiv)
+
Ag2CO3 (2 equiv)
MeCN 115 °C
R
6a, R = H, 85%
6b, R = Br, 43%
R
Scheme 5 Reaction of N-(naphthalen-1-yl)acetamides with allyl-
benzene
(10) (a) Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R. H.; Li, X.
J. Org. Chem. 2010, 75, 7487. (b) Song, G.; Gong, X.; Li, X.
J. Org. Chem. 2011, 76, 7583. (c) Su, Y.; Zhao, M.; Han, K.;
Song, G.; Li, X. Org. Lett. 2010, 12, 5462. (d) Wang, F.;
Song, G.; Du, Z.; Li, X. J. Org. Chem. 2011, 76, 2926.
(e) Wang, F.; Song, G.; Li, X. Org. Lett. 2010, 12, 5430.
(f) Wei, X.; Zhao, M.; Du, Z.; Li, X. Org. Lett. 2011, 13,
4636.
(11) Li, X.; Gong, X.; Zhao, M.; Song, G.; Deng, J.; Li, X. Org.
Lett. 2011, 13, 5808.
(12) Kim, B. S.; Jang, C.; Lee, D. J.; Youn, S. W. Chem.–Asian
J. 2010, 5, 2336.
In summary, we have developed Rh(III)-catalyzed oxida-
tive coupling of N-(naphthalen-1-yl)amides with acrylates
and styrenes. This methodology showed a wide substrate
scope for both amides and alkenes. It is noteworthy that
halide functional groups were tolerated both in the naph-
thyl ring and in the styrene substrate. The high compati-
bility and versatile reactivity of this transformation may
find wide applications in the synthesis of related struc-
tures.
(13) Typical Procedure of Olefination Reactions
A pressure tube was charged with Ag2CO3 (297 mg, 1.08
mmol, 2 equiv), [RhCp*Cl2]2 (13.3 mg, 0.0216 mmol, 4
mol%), and 1a (100 mg, 0.54 mmol, 1 equiv). After purging
with nitrogen, MeCN (3 mL) and 2c (138 mg, 1.08 mmol, 2
equiv) were added. The tube was sealed, and the mixture was
stirred at 115 °C for 16 h, followed by diluting with CH2Cl2
and filtration through Celite. All volatiles were removed
under reduced pressure. The purification was performed by
flash column chromatography on silica gel using EtOAc in
PE to give 3c (yield 89%).
Acknowledgment
We are grateful to the National Natural Science Foundation of Chi-
na (No. 21072188) and Dalian Institute of Chemical Physics, Chi-
nese Academy of Sciences for financial support. X.L. conceived
and designed all the experiments.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
Spectral Data
Compound 3c (major isomer): 1H NMR (500 MHz, CDCl3):
δ = 7.66 (d, J = 8.2 Hz, 1 H), 7.58–7.47 (m, 1 H), 7.42 (s, 2
H), 7.39–7.32 (m, 1 H), 6.97 (s, 1 H), 6.03 (s, 1 H), 3.25 (d,
J = 14.8 Hz, 1 H), 2.99–2.85 (m, 1 H), 2.54 (s, 3 H), 1.19 (s,
9 H). 13C NMR (126 MHz, CDCl3): δ = 169.48, 168.64,
141.86, 138.77, 131.64, 129.96, 128.59, 128.32, 123.53,
119.07, 117.65, 107.05, 80.63, 62.67, 40.33, 27.75, 25.41.
ESI-HRMS: m/z calcd for [C19H21NO3 + H]+: 312.1599;
found: 312.1592.
References
(1) (a) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res 2001,
34, 633. (b) Fujiwara, Y.; Moritani, I.; Matsuda, M.;
Teranishi, S. Tetrahedron Lett. 1968, 9, 633. (c) Moritanl, I.;
Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119.
(2) (a) Baran, P. S.; Corey, E. J. J. Am. Chem. Soc. 2002, 124,
7904. (b) Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew.
Chem. Int. Ed. 2008, 47, 3004. (c) Cushing, T. D.; Sanz-
Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1993, 115,
9323. (d) Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am.
Chem. Soc. 2004, 126, 9552. (e) Trost, B. M.; Godleski,
S. A.; Genet, J. P. J. Am. Chem. Soc. 1978, 100, 3930.
(3) (a) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem.
Soc. Rev. 2011, 40, 4740. (b) Yeung, C. S.; Dong, V. M.
Chem. Rev. 2011, 111, 1215.
Compound 5a: 1H NMR (500 MHz, DMSO): δ = 9.90 (s, 1
H), 8.10 (d, J = 16.0 Hz, 1 H), 7.95–7.84 (m, 2 H), 7.62 (d,
J = 7.4 Hz, 2 H), 7.55–7.46 (m, 3 H), 7.40 (t, J = 7.7 Hz, 2
H), 7.33 (d, J = 7.2 Hz, 1 H), 7.27 (t, J = 7.3 Hz, 1 H), 6.75
(d, J = 16.0 Hz, 1 H), 1.82 (s, 3 H). 13C NMR (126 MHz,
DMSO): δ = 169.37, 137.95, 135.82, 135.47, 134.54,
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 1649–1652