L. M. Fleury et al. / Tetrahedron Letters 53 (2012) 5376–5379
5379
the nature of the protecting group.3–5,9 A likely mechanism in-
Acknowledgment
volves formation of intermediates 12a and 12b resulting from
ZnX2 coordination to the carbonyl group as either a monodentate
Lewis acid, or chelation to the adjacent phenolic oxygen in a biden-
tate fashion10 respectively upon exposure to benzoyl derivative 11
(Scheme 3). The presence of bulky ortho ethers (e.g., TBSOAr) likely
prevents bidentate chelation,11 whereas less sterically demanding
groups, such as the methoxy methyl derivatives and benzyl, enable
the formation of intermediate 12b.12 Regardless of whether ZnX2
behaves as a monodentate or bidentate Lewis acid, the enhanced
electrophilicity of the ortho ether in 12a and 12b and increased sta-
bility of the resulting phenoxide lead to the observed chemoselec-
tivity. Addition of exogenous halide from the Zn(II) salt at the more
electrophilic ether leads to liberation of the 2-hydroxy group and
formation of zinc phenoxide 13. Experiments were performed
using anhydrous ZnCl2 weighed in a glove box for accuracy and
reproducibility. However, it is noteworthy that comparable results
were obtained with ZnCl2 exposed to air without the strict exclu-
sion of water or oxygen. These observations suggest that although
adventitious water may aid in cleavage of the ortho protecting
group, a more likely mechanism involves phenol displacement by
residual halogen. Subsequent protonation of zinc phenoxide 13
upon aqueous workup provides the observed phenol 14.
The authors thank the University of Notre Dame for financial
support of this research.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2003; (b) Wuts,
P. G. M.; Greene, T. W. In Greene’s Protective Groups in Organic Synthesis, 4th ed.;
John Wiley & Sons: Hoboken, 2007.
2. (a) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.; Dong, H.;
Kadota, S. Org. Lett. 1999, 1, 1733–1736; (b) Kadota, S.; Hui, D.; Basnet, P.;
Prasain, J. K.; Xu, G.; Namba, T. Chem Pharm. Bull. 1994, 2647–2649; (c) Kadota,
S.; Prasain, J. K.; Li, J. X.; Basnet, P.; Dong, H.; Tani, T.; Namba, T. Tetrahedron
Lett. 1996, 37, 7283–7286; (d) Prasain, J. K.; Li, J.-X.; Tezuka, Y.; Tanaka, K.;
Basnet, P.; Dong, H.; Namba, T.; Kadota, S. J. Nat. Prod. 1998, 61, 212–216; (e)
Prasain, J. K.; Tezuka, Y.; Li, J.-X.; Tanaka, K.; Basnet, P.; Dong, H.; Namba, T.;
Kadota, S. J. Chem. Res., Synop. 1998, 7, 22–23; (f) Tezuka, Y.; Gewali, M. B.; Ali,
M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208–213.
3. Yadav, J. S.; Reddy, B. V. S.; Madan, C.; Hashim, S. R. Chem. Lett. 2000, 29, 738–
739.
In conclusion, the method described herein enables the selec-
tive ortho-deprotection of phenol derivatives in the presence of
other hydroxy groups bearing the same protecting group. This
method requires only the use of inexpensive and readily available
ZnCl2 or ZnBr2, and avoids the more conventional harshly Brønsted
or Lewis acidic conditions used in the ortho-deprotection of phe-
nols.1,13 Given the prevalence of polyhydroxylated benzene deriv-
atives in biologically active natural products, this method will
find broad utility in the context of total synthesis.14 Further explo-
ration of the directing effects of carbonyl groups for the deprotec-
tion of neighboring protecting groups, as well as additional
mechanistic studies, is underway and will be reported in due
course.
4. Keith, J. M. Tetrahedron Lett. 2004, 45, 2739–2742.
5. De Groot, A. H.; Dommisse, R. A.; Lemière, G. L. Tetrahedron 2000, 56, 1541–
1549.
6. Fletcher, S.; Gunning, P. T. Tetrahedron Lett. 2008, 49, 4817–4819.
7. Campos, C. A.; Gianino, J. B.; Pinkerton, D. M.; Ashfeld, B. L. Org. Lett. 2011, 13,
5680–5683.
8. See Supplementary data for details.
9. Martín, Castro A. M Chem. Rev. 2004, 104, 2939–3002.
10. Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton,
B.; Price, A. W.; Somvichien, N. Tetrahedron Lett. 1966, 7, 4153–4159.
11. Keck, G. E.; Castellino, S.; Wiley, M. R. J. Org. Chem. 1986, 51, 5478–5480.
12. Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 17, 809–812.
13. Weissman, S. A.; Zewge, D. Tetrahedron 2005, 61, 7833–7863.
14. (a) Ohmori, K. Chem. Record 2011, 11, 252–259; (b) Pereira, D.; Valentão, P.;
Pereira, J.; Andrade, P. Molecules 2009, 14, 2202–2211.