ORGANIC
LETTERS
2012
Vol. 14, No. 19
5042–5045
Helically Foldable Diphenylureas as Anion
Receptors: Modulation of the Binding
Affinity by the Chain Length
Min Jung Kim,† Hye-Won Lee,† Dohyun Moon,*,‡ and Kyu-Sung Jeong*,†
Department of Chemistry, Yonsei University, Seoul 120-749, South Korea, and Pohang
Accelerator Laboratory, San 31 Hyoja-Dong, Nam-Gu, Pohang, KyungBuk 790-784,
South Korea
dmoon@postech.ac.kr; ksjeong@yonsei.ac.kr
Received August 15, 2012
ABSTRACT
Using a series of diphenylureas capable of folding to helical conformations, the binding trends have been compared between two anions of
different sizes, chloride and sulfate. The binding constant for the sulfate ion steadily increases from monomer to pentamer as the chain length
increases, but for the chloride ion it increases up until the trimer and then reaches a plateau.
Anion recognition chemistry has been an active area of
research for the past two decades, which includes the
synthesis and characterization of anion receptors, sensors,
transporters, and anion-induced assemblies.1 Anion recog-
nition was mostly based on H-bonding interactions, for
which amide and urea groups were frequently incorpo-
rated to synthetic anion receptors. Wilcox et al.2 and
Hamilton et al.3 demonstrated for the first time that
(thio)ureas could form strong H-bonds with oxoanions
such as carboxylates, sulfates, and phosphates. Since then,
a large number of urea-based anion receptors4,5 that
contain two or more urea groups to achieve multiple
H-bonds with target anions for the enhanced affinity and
selectivity has been reported.
(5) For selected recent examples of urea-based anion receptors, see:
ꢀ
(a) Dydio, P.; Zielinski, T.; Jurczak, J. Org. Lett. 2010, 12, 1076–1078.
(b) Fischer, L; Guichard, G. Org. Biomol. Chem. 2010, 8, 3101–3117.
(c) Jia, C.; Wu, B.; Li, S.; Huang, X.; Yang, X.-J. Org. Lett. 2010, 12,
5612–5615. (d) Jia, C.; Wu, B.; Li, S.; Huang, X.; Zhao, Q.; Li, Q.-S.;
Yang, X.-J. Angew. Chem., Int. Ed. 2011, 50, 486–490. (e) Li, S.; Jia, C.;
Wu, B.; Luo, Q.; Huang, X.; Yang, Z.; Li, Q.-S.; Yang, X.-J. Angew.
Chem., Int. Ed. 2011, 50, 5721–5724. (f) Fremaux, J.; Fischer, L.;
Arbogast, T.; Kauffmann, B.; Guichard, G. Angew. Chem., Int. Ed.
2011, 50, 11382–11385. (g) Medda, A. K.; Park, C. M.; Jeon, A.; Kim,
H.; Sohn, J.-H.; Lee, H.-S. Org. Lett. 2011, 13, 3486–3489. (h) Busschaert,
† Department of Chemistry, Yonsei University.
‡ Pohang Accelerator Laboratory.
(1) (a) Sessler, J. L.; Gale, P. A.; Cho, W.-S. Anion Receptor
Chemistry; Royal Societyof Chemistry: Cambridge, U.K., 2006.
(b) Mullen, K. M.; Beer, P. D. Chem. Soc. Rev. 2009, 38, 1701–1713.
(c) Anion Complexation in Supramolecular Chemistry, Topics in
Heterocyclic Chemistry; Gale, P. A., Dehaen, W., Eds.; Springer-Verlag:
Berlin, 2010; Vol. 24. (d) Themed issue: Supramolecular chemistry of
anionic species; Gale, P., Gunnlaugsson, T., Guest Eds. Chem. Soc. Rev.
2010, 39, 3581ꢀ4008. (e) Wenzel, M.; Hiscock, J. R.; Gale, P. A. Chem.
Soc. Rev. 2012, 41, 480–520.
(2) Smith, P. J.; Reddington, M. V.; Wilcox, C. S. Tetrahedron Lett.
1992, 33, 6085–6088.
(3) Fan, E.; Van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am.
Chem. Soc. 1993, 115, 369–370.
(4) For recent reviews of urea-based anion receptors, see: (a) Zhang,
Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187–1198. (b) Li, A.-F.;
Wang, J.-H.; Wang, F.; Jiang, Y.-B. Chem. Soc. Rev. 2010, 39, 3729–
3745. (c) Amendola, V.; Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev. 2010,
39, 3889–3915. (d) Steed, J. W. Chem. Soc. Rev. 2010, 39, 3686–3699.
(e) Hay, B. P. Chem. Soc. Rev. 2010, 39, 3700–3708. (f) Dydio, P.;
Lichosyt, D.; Jurczak, J. Chem. Soc. Rev. 2011, 40, 2971–2985.
ꢀ
ꢀ
ꢀ
N.; Wenzel, M.; Light, M. E.; Iglesias-Hernandez, P.; Perez-Tomas, R.;
Gale, P. A. J. Am. Chem. Soc. 2011, 133, 14136–14148. (i) Chudzinski,
M. G.; McClary, C. A.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133,
10559–10567. (j) dos Santos, C. M. G.; Boyle, E. M.; De Solis, S.;
Kruger, P. E.; Gunnlaugsson, T. Chem. Commun. 2011, 47, 12176–
12178. (k) Arunachalam, M.; Ghosh, P. Chem. Commun. 2011, 47,
8477–8492. (l) Bergamaschi, G.; Boiocchi, M.; Monzani, E.; Amendola,
V. Org. Biomol. Chem. 2011, 9, 8276–8283. (m) Amendola, V.; Fabbrizzi,
L.; Mosca, L.; Schmidtchen, F.-P. Chem.;Eur. J. 2011, 17, 5972–5981.
(n) Baggi, G.; Boiocchi, M.; Fabbrizzi, L.; Mosca, L. Chem.;Eur. J.
2011, 17, 9423–9439. (o) Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.;
Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.; Hay, B. P.
J. Am. Chem. Soc. 2012, 134, 8525–8534. (p) Young, P. G.; Jolliffe, K. A.
Org. Biomol. Chem. 2012, 10, 2664–2672. (q) Wu, B.; Jia, C.; Wang, X.;
Li, S.; Huang, X.; Yang, X.-J. Org. Lett. 2012, 14, 684–687. (r) Li, S.;
Wei, M.; Huang, X.; Yang, X.-J.; Wu, B. Chem. Commun. 2012, 48,
3097–3099.
r
10.1021/ol302266w
Published on Web 09/17/2012
2012 American Chemical Society