triazole synthesis should be studied, which allow use of
internal and acyclic alkynes at rt or below.
Scheme 1. Strategies of AzideꢀAlkyne Cycloaddions and Our
We have recently developed a method for the synthesis
of cyclic unsaturated imines by way of the reactions with
allyl cations from allyl alcohols and organic azides.12
Based on the conjugated carbocation chemistry, we herein
report a rapid synthesis of highly substituted 1H-1,2,3-
triazoles from propargyl cations and organic azides, which
can accept both terminal and internal alkynes under low
temperature and multicomponent coupling reactions.
Approach
(5) (a) Ikawa, T.; Takagi, A.; Goto, M.; Aoyama, Y.; Ishikawa, Y.;
Itoh, Y.; Fujii, S.; Tokiwa, H.; Akai, S. J. Org. Chem. 2013, 78, 2965–
2983. (b) McNulty, J.; Keskar, K. Eur. J. Org. Chem. 2012, 5462–5470.
~
(c) Meza-Avina, M. E.; Patel, M. K.; Lee, C. B.; Dietz, T. J.; Croatt,
M. P. Org. Lett. 2011, 13, 2984–2987. (d) Kwok, S. W.; Fotsing, J. R.;
Fraser, R. J.; Rodionov, V. O.; Fokin, V. V. Org. Lett. 2010, 12, 4217–
4219. (e) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.;
Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127,
~
15998–15999. (f) Krasinski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett.
2004, 6, 1237–1240. For review, see: (g) Jewett, J. C.; Bertozzi, C. R.
Chem. Soc. Rev. 2010, 39, 1272–1279.
(6) For cyclooctynes, see: (a) Gordon, C. G.; Mackey, J. L.; Jewett,
J. C.; Sletten, E. M.; Houk, K. N.; Bertozzi, C. R. J. Am. Chem. Soc.
2012, 134, 9199–9208. (b) Friscourt, F.; Fahrni, C. J.; Boons, G.-J.
J. Am. Chem. Soc. 2012, 134, 18809–18815. (c) Debets, M. F.; van Berkel,
S. S.; Dommerholt, J.; Dirks, A. J.; Rutjes, F. P. J. T.; van Delft, F. L.
Acc. Chem. Res. 2011, 44, 805–815. (d) Ning, X.; Guo, J.; Wolfert, M. A.;
Boons, G.-J. Angew. Chem., Int. Ed. 2008, 47, 2253–2255. (e) Codelli,
J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008,
130, 11486–11493. For benzynes, see: (f) Shi, F.; Chen, Y.; Larock, R. C.
Org. Lett. 2008, 10, 2409–2412. (g) CampbellꢀVerduyn, L.; Elsinga,
P. H.; Mirfeizi, L.; Dierckx, R. A.; Feringa, B. L. Org. Biomol. Chem.
2008, 6, 3461–3463.
^
(7) (a) Merling, E.; Lamm, V.; Geib, S. J.; Lacote, E.; Curran, D. P.
€
Org. Lett. 2012, 14, 2690–2693. (b) Weingartner, W.; Maas, G. Eur. J.
Org. Chem. 2012, 6372–6382. (c) Yanai, H.; Taguchi, T. Tetrahedron
Lett. 2005, 46, 8639–8643. (d) Journet, M.; Cai, D.; Kowal, J. J.; Larsen,
R. D. Tetrahedron Lett. 2001, 42, 9117–9118. (e) Degl’Innocenti, A.;
Scafato, P.; Capperucci, A.; Bartoletti, L.; Mordini, A.; Reginato, G.
Tetrahedron Lett. 1995, 36, 9031–9034. For substituent effect on
performance of alkynes including ynones in CuAAC, see: (f) Kuslukhin,
A. A.; Hong, V. P.; Breitenkamp, K. E.; Finn, M. G. Bioconjugate Chem.
2013, 24, 684–689. For carbenes, see: (g) Sawoo, S.; Dutta, P.; Chakraborty,
A.; Mukhopadhyay, R.; Bouloussa, O.; Sarkar, A. Chem. Commun. 2008,
5957–5959.
Ourstrategyfor triazolesynthesisisshownineq1. Using
propargyl cations prepared from alcohols, reactions with
azides at C3 could generate the allenylaminodiazonium
intermediates powerful enough to form triazole rings
immediately. Although it is known that allenyl azides
gradually cyclize into triazoles at rt,13 the chemistry of
these diazonium compounds have been not reported to the
best of our knowledge. However, we expected that these
unstable species could achieve rapid transformations at
ambient temperature. Due to the strong reactivities of both
propargyl cations and diazonium intermediates, trisubsti-
tuted triazoles functinalized with additional nucleophiles
could be obtained. Although concerted [3 þ 2] reactions
would deliver both 1H- and 3H-triazoles, deactivation of
the C2 position by a delocalized carbocation can avoid this
pathway and yield products selectively.
Our plan is challenging from the following viewpoints: (1)
with azides, an sp2 carbocation (C1) is more reactive than the
desired sp carbocation (C3)14aꢀc to produce unsaturated
imines by a Schmidt reaction15 or propargyl azides;13
(2) MeyerꢀSchuster rearrangement producing enones would
be competitive;14d To avoid the reaction at C1 by steric
and electronic influences,16 we designed diphenyl propargyl
(8) (a) Katritzky, A. R.; Zhang, Y.; Singh, S. K. Heterocycles 2003,
60, 1225–1239. (b) Croatt et al. reported triazolation at ꢀ78 °C with
lithium acetylides and sulfonyl azides. See ref 5c.
(9) Even in the presence of azides and acids, the [3 þ 2] reaction of
ynone 11 required a few hours at ambient temperature (eq 3).
~
(10) (a) Meza-Avina, M. E.; Patel, M. K.; Croatt, M. P. Tetrahedron
2013, 69, 7840–7846. (b) Miura, T.; Hiraga, K.; Biyajima, T.; Nakamuro,
T.; Murakami, M. Org. Lett. 2013, 15, 3298–3301. (c) Miura, T.; Tanaka,
T.; Biyajima, T.; Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52,
3883–3886. (d) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc. 2013,
135, 6802–6805. (e) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am.
Chem. Soc. 2013, 135, 4652–4655. (f) Zibinsky, M.; Fokin, V. V. Angew.
Chem., Int. Ed. 2013, 52, 1507–1510. (g) Selander, N.; Worrell, B. T.;
Chuprakov, S.; Velaparthi, S.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134,
14670–14673. (h) Selander, N.; Fokin, V. V. J. Am. Chem. Soc. 2012, 134,
2477–2480. (i) Miura, T.; Biyajima, T.; Fujii, T.; Murakami, M. J. Am.
Chem. Soc. 2012, 134, 194–196. For reviews, see: (j) Gulevich, A. V.;
Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084–
3213. (k) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012,
51, 862–872.
(12) (a) Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8,
1021–1034. (b) Hayashi, K.; Tanimoto, H.; Zhang, H.; Morimoto, T.;
Nishiyama, Y.; Kakiuchi, K. Org. Lett. 2012, 14, 5728–5731.
(11) (a) Selander, N.; Worrell, B. T.; Fokin, V. V. Angew. Chem., Int.
Ed. 2012, 51, 13054–13057. (b) Miura, T.; Funakoshi, Y.; Morimoto,
M.; Biyajima, T.; Murakami, M. J. Am. Chem. Soc. 2012, 134, 17440–
17443.
(13) (a) Fotsing, J. R.; Banert, K. Eur. J. Org. Chem. 2005, 3704–
3714. (b) Banert, K. Liebigs Ann./Recueil 1997, 2005–2018. (c) Banert,
K. Chem. Ber. 1989, 122, 911–918. (d) Banert, K.; Hagedorn, M. Angew.
Chem., Int. Ed. Engl. 1989, 25, 1675–1676. And see also ref 1a.
B
Org. Lett., Vol. XX, No. XX, XXXX